C++ code 7.8.11: Sub-problem (7-8.i): SDIRK solver for gradient flow problem = GITHUB

std :: vector<Eigen :: VectorXd> SolveGradientFlow (const Eigen::VectorXd &d,
double lambda,
const Eigen::VectorXd &yO,
double T, unsigned int M) {
// initialize solution vector
std :: vector<Eigen :: VectorXd> sol(M + 1, Eigen::VectorXd::Zero(y0.size()));

© ©® N o o B~ w0 N

// Define the right hand side of the ODE y’ = f(y), and the Jacobian of f.
10 auto f = [d, lambda](const Eigen::VectorXd &y) {

1 Eigen :: VectorXd val =

12 -2. « std::cos(y.squaredNorm()) = y — 2. = lambda » d.dot(y) = d;

13 return val;

14 };

15 auto df = [d, lambda](const Eigen::VectorXd &y) {

16 int dim = y.size();

17 Eigen::MatrixXd term1 = 4. « std::sin(y.squaredNorm()) = y = y.transpose();
18 Eigen :: MatrixXd term2 =

19 -2. = std::cos(y.squaredNorm()) = Eigen::MatrixXd::ldentity (dim, dim);
20 Eigen :: MatrixXd term3 = -2. = lambda = d » d.transpose();

21 Eigen:: MatrixXd dfval = term1 + term2 + term3;

22 return dfval;

23 };

25 // Split the interval [0,T] into M intervals of size h.
26 double h = T / M;

27 Eigen::VectorXd y = y0;

28 sol[0] = vy;

29 // Evolve up to time T:

30 for (int i = 1; i <= M; i++) {

31 y = DiscEvolSDIRK(f, df, y, h);
32 sol[i] = vy;

33 }

34 return sol;



https://github.com/erickschulz/NPDECODES/blob/master/homeworks/GradientFlow/mastersolution/gradientflow.cc

