
C++ code 7.8.11: Sub-problem (7-8.i): SDIRK solver for gradient flow problem ➺ GITHUB

2 std : : vector <Eigen : : VectorXd> SolveGradientFlow (const Eigen : : VectorXd &d ,

3 double lambda ,

4 const Eigen : : VectorXd &y0 ,

5 double T , unsigned i n t M) {

6 // initialize solution vector

7 std : : vector <Eigen : : VectorXd> so l (M + 1 , Eigen : : VectorXd : : Zero (y0 . size ())) ;

8

9 // Define the right hand side of the ODE y’ = f(y), and the Jacobian of f.

10 auto f = [d , lambda] (const Eigen : : VectorXd &y) {

11 Eigen : : VectorXd va l =

12 −2. * std : : cos (y . squaredNorm ()) * y − 2. * lambda * d . dot (y) * d ;

13 return va l ;

14 } ;

15 auto df = [d , lambda] (const Eigen : : VectorXd &y) {

16 i n t dim = y . size () ;

17 Eigen : : MatrixXd term1 = 4. * std : : s i n (y . squaredNorm ()) * y * y . transpose () ;

18 Eigen : : MatrixXd term2 =

19 −2. * std : : cos (y . squaredNorm ()) * Eigen : : MatrixXd : : I den t i t y (dim , dim) ;

20 Eigen : : MatrixXd term3 = −2. * lambda * d * d . transpose () ;

21 Eigen : : MatrixXd d f v a l = term1 + term2 + term3 ;

22 return d f v a l ;

23 } ;

24

25 // Split the interval [0,T] into M intervals of size h.

26 double h = T / M;

27 Eigen : : VectorXd y = y0 ;

28 so l [0] = y ;

29 // Evolve up to time T:

30 for (i n t i = 1 ; i <= M; i ++) {

31 y = DiscEvolSDIRK (f , df , y , h) ;

32 so l [i] = y ;

33 }

34 return so l ;

35 }

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/GradientFlow/mastersolution/gradientflow.cc

