C++ code 9.10.17: Implementation of computeMQ () = GitLab

Eigen :: SparseMatrix<double> computeMQ(const |f ::assemble:: DofHandler &dofh_Q) {
// TOOLS AND DATA
// Dimension of finite element space
const If ::uscalfe::size_type N_dofs_Q(dofh_Q.NumDofs() ) ;
// Pointer to current mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = dofh_Q.Mesh() ;
// Sparse matrix to be returned
Eigen :: SparseMatrix<double> M Q(N_dofs_Q, N_dofs_Q) ;
10 // ASSEMBLY
11 // First option: assembly via triplet format
12 If ::assemble :: COOMatrix<double> M Q COO(N_dofs_Q, N_dofs_Q) ;
13 // Loop over all cells
14 for (const If::mesh:: Entity =entity : mesh p->Entities (0)) {

© ©® N o o B~ w0 N

15 const double area = If ::geometry::Volume («(entity ->Geometry()));
16 auto global_idx = dofh_Q.GlobalDoflndices (xentity) ;

17 M Q COO. AddToEntry (global_idx[0], global_idx[0], area);

18 M Q COO. AddToEntry (global_idx[1], global_idx[1], area);

19 }

20 M Q = M Q COO.makeSparse () ;

21 std ::cout << "Assembly: M Q finished" << std::endl;

22 // Allternative option: reserve () method plus direct initialization

of
23 // diagonal entries.

25 return M Q;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/

