C++ code 9.10.22: Implementation of computeMV () = GitLab

© ©® N o o B~ w0 N

template <typename RHOFUNCTION>
Eigen :: SparseMatrix<double> computeMV (
std :: shared_ptr<|f :: uscalfe :: FeSpacelLagrangeO1<double>> fe_space_V,
RHOFUNCTION &&rho) {
// TOOLS AND DATA
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = fe_space_V->Mesh() ;
const If ::assemble:: DofHandler &dofh_V{fe_space_V->LocGlobMap () };
const If ::uscalfe::size_type N_dofs_V(dofh_V.NumDofs());
// For returning the matrix
Eigen :: SparseMatrix<double> M V(N_dofs_V, N_dofs_V);

auto zero_mf = If ::mesh:: utils :: MeshFunctionGlobal (
[I(Eigen::Vector2d x) —> double { return 0.0; });
auto rho_mf = If ::mesh:: utils :: MeshFunctionGlobal (

[rho](Eigen::Vector2d x) —> double { return rho(x); });

// ASSEMBLY
// Matrix in triplet format holding Galerkin matrix, zero initially.
If ::assemble :: COOMatrix<double> M V_COO(N_dofs_V, N_dofs_V);
// ReactionDiffusionElementMatrixProvider<SCALAR, DIFF COEFF, REACTION COEFF,
// quadrule>
// Tell this ENTITY MATRIX PROVIDER object to use the local trapezoidal rule
// Lehrfempp requires the specification of a quadrature rule for
// quadrilateral. A generic rule for QUAD that is NOT used in this problem is
// passed. Alternatively : see computeMV alt
If ::uscalfe :: ReactionDiffusionElementMatrixProvider <double, decltype(zero_mf),
decltype (rho_mf)>
elmat_builder (fe_space_V, zero_mf, rho_mf,
{{If ::base::RefEl::kTria (), make_TriaQR_TrapezoidalRule ()},
{If ::base::RefEl::kQuad (), If::quad::make_QuadQR_P404() }});
If ::assemble:: AssembleMatrixLocally (0, dofh_V, dofh_V, elmat_builder,
M_V_COO) ;
M_V = M_V_COO. makeSparse () ;
std ::cout << "Assembly: MV finished" << std::endl;

return M V;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/

