


C++ code 9.10.29: Code for leapfrogMixedWave () =* GitLab

© ©® N o 0o B~ w N

45

46

47

48
49
50
51
52
53
54
55

template <typename RHOFUNCTION, typename FFUNCTION,
typename RECORDER = std:: function<void (double, double)>>
std :: pair<Eigen :: VectorXd, Eigen::VectorXd> leapfrogMixedWave (
const std::shared_ptr<If ::uscalfe :: FeSpacelLagrangeO1<double>> &fe_space_V,
const If ::assemble:: UniformFEDofHandler &dofh_Q, RHOFUNCTION &&rho ,
FFUNCTION &&f, double T, unsigned int nb_timesteps,
RECORDER &&rec = [](double, double) {}) {
// Size of timestep
double stepsize = T / nb_timesteps;
// Index mapper for linear Lagrangian FE space
const If ::assemble:: DofHandler &dofh_V{fe_space_V->LocGlobMap () };
// Dimension of finite element space
const If ::uscalfe::size_type N_dofs_Q(dofh_Q.NumDofs() ) ;
const If ::uscalfe::size_type N_dofs_V (dofh_V.NumDofs() ) ;

// Zero INITIAL CONDITIONS
Eigen:: VectorXd mu_init = Eigen::VectorXd::Zero(N_dofs_V) ;
Eigen :: VectorXd kappa_init = Eigen::VectorXd::Zero(N_dofs_Q) ;

// PRECOMPUTATIONS: essential for efficiency
std ::cout << "Precomputing Galerkin Matrices :" << std::endl;
// Galerkin matrix My
Eigen :: SparseMatrix<double> M V = computeMV (fe_space_V,
std ::cout << "Creating SparseLU solver for M V: ";
Eigen ::SparseLU<Eigen :: SparseMatrix<double>> solver_MV;
solver_MV .compute (M_V) ;
LF_VERIFY_MSG (solver_MV.info () == Eigen::Success, "LU decomposition failed");
std ::cout << " Done" << std::endl;
// Galerkin matrix Mg
Eigen :: SparseMatrix<double> M Q = computeMQ(dofh_Q) ;
std ::cout << "Creating SparseLU solver for MQ: ";
Eigen ::SparseLU<Eigen :: SparseMatrix<double>> solver_ MQ;
solver_MQ.compute (M Q) ;
LF_VERIFY_MSG (solver_MQ. info () == Eigen::Success, "LU decomposition failed");
std ::cout << "Done" << std::endl;
// Galerkin matrix B
Eigen :: SparseMatrix<double> B = computeB(dofh_V, dofh_Q);

rho) ;

// EVOLUTION

// Vectors for returning result

Eigen :: VectorXd mu;

Eigen :: VectorXd kappa;

std ::cout << "Evolution using the leapfrog timestepping scheme." << std::endl;

Eigen :: VectorXd mu_cur = mu_init; // ﬁ(])
g 1l
Eigen ::VectorXd kappa_cur = kappa_init; // ®U%2)
Eigen :: VectorXd mu_next; // ﬁ(Hl)
NS,
Eigen ::VectorXd kappa_next; // R‘(HE)
Eigen :: VectorXd kappa_avg;
for (int j = 0; j < nb_timesteps; j++) {

// Right hand side vector @(t(j+3))

const Eigen::VectorXd rhs{computeRHS (fe_space_V, f,

// Update of j

mu_next = solver_MV.solve(stepsize = (rhs + B.iranspose ()
MV = mu_cur);

stepsize = (] + 0.5))};

= kappa_cur) +

/7 rr_ 14 o~ =



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/

