

C++ code 9.12.8: Implementation of (solveRKSobEv) ➺ GitLab

2 template <typename MESHFUNCTION_BETA, typename MESHFUNCTION_ALPHA>

3 Eigen : : VectorXd solveRKSobEvl (

4 std : : shared_ptr <const l f : : fe : : ScalarFESpace<double>> fe_space_p ,

5 const MESHFUNCTION_BETA &beta , const MESHFUNCTION_ALPHA &alpha ,

6 const Eigen : : VectorXd &mu0, double T , const Eigen : : MatrixXd &RK_Mat ,

7 const Eigen : : VectorXd &b , unsigned i n t M) {

8 LF_ASSERT_MSG(mu0. size () == (fe_space_p −>LocGlobMap ()) . NumDofs () ,

9 "Wrong length of coe f f i c ien t vector ") ;

10 // Build Galerkin matrices taking into account homogeneous Dirichlet
boundary

11 // conditions

12 Eigen : : SparseMatrix <double> B =

13 getFEMatrixDirichlet <double , MESHFUNCTION_BETA>(fe_space_p , beta) ;

14 Eigen : : SparseMatrix <double> A =

15 getFEMatrixDirichlet <double , MESHFUNCTION_ALPHA>(fe_space_p , alpha) ;

16 Eigen : : VectorXd muj (mu0) ; // current state vector

17 // LU-decompose B outside timestepping loop, which is important for
efficient

18 // implementation

19 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

20 so l ve r . compute (B) ;

21 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , "LU decomposition fa i l ed ") ;

22

23 i n t s = RK_Mat . cols () ; // Number of stages

24 LF_ASSERT_MSG(s == RK_Mat . rows () , " Butcher matrix must be square ! ") ;

25 LF_ASSERT_MSG(s == b . size () , "s weights required ! ") ;

26 // timestep size

27 double tau = T / M;

28 // Main timestepping loop

29 Eigen : : VectorXd mu_next (mu0. size ()) ; // next state vector

30 Eigen : : VectorXd tmp (mu0. size ()) ; // Summation vector

31 std : : vector <Eigen : : VectorXd> incs (s , mu_next) ; // RK increments

32 // The r.h.s. vector field for MOL ODE in standard form

33 // Invoking solver.solve() amounts to the application of the

34 // inverse of the matrix B.

35 auto Vf = [& so lver , &A] (const Eigen : : VectorXd &y) −> Eigen : : VectorXd {

36 const Eigen : : VectorXd f y = −so l ve r . solve (A * y) ;

37 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , " Solving LSE fa i l ed ") ;

38 return f y ;

39 } ;

40 for (i n t k = 0; k < M; ++k) {

41 // First increment vector

42 i ncs [0] = Vf (muj) ;

43 // Compute increments successively, which is possible for an
explicit RK-SSM

44 // Simultaneous assemble next state vector

45 mu_next = muj + (tau * b [0]) * incs [0] ;

46 for (i n t i = 1 ; i < s ; ++ i) {

47 // Weighted sum of already computed increments

48 tmp . setZero () ;

49 for (i n t j = 0 ; j < i ; ++ j) {

50 tmp += RK_Mat (i , j) * incs [j] ;

51 }

52 i ncs [i] = Vf (muj + tau * tmp) ;

53 // Update state by weighed sum of increments

54 mu_next += (tau * b [i]) * incs [i] ;

55 }

// Efficient way to set current state to new state

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SobolevEvolutionProblem/mastersolution/sobolevevolutionproblem.h

