


C++ code 9.12.8: Implementation of (solveRKSobEv) = GitLab

© ©® N o o B~ w0 N

44
45
46
47
48
49
50
51
52
53
54
55

template <typename MESHFUNCTION_BETA, typename MESHFUNCTION_ALPHA>

Eigen :: VectorXd solveRKSobEvlI(
std :: shared_ptr<const |f ::fe ::ScalarFESpace<double>> fe_space_p,
const MESHFUNCTION BETA &beta, const MESHFUNCTION_ALPHA &alpha,
const Eigen::VectorXd &mu0, double T, const Eigen:: MatrixXd &RK_Mat,
const Eigen::VectorXd &b, unsigned int M) {

LF_ASSERT MSG(mu0.size () == (fe_space_p—->LocGlobMap ()).NumDofs() ,
"Wrong length of coefficient vector");

// Build Galerkin matrices taking into account homogeneous Dirichlet
boundary
// conditions

Eigen :: SparseMatrix<double> B =

getFEMatrixDirichlet <double, MESHFUNCTION BETA>(fe_space_p, beta);
Eigen :: SparseMatrix<double> A =

getFEMatrixDirichlet <double, MESHFUNCTION ALPHA>(fe_space_p, alpha);
Eigen::VectorXd muj(mu0); // current state vector

// LU-decompose B outside timestepping loop, which is important for
efficient
// implementation

Eigen ::SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute (B) ;
LF_VERIFY_MSG(solver.info () == Eigen::Success, "LU decomposition failed");

int s = RK_Mat.cols(); // Number of stages

LF_ASSERT MSG(s == RK_Mat.rows (), "Butcher matrix must be square!");
LF_ASSERT MSG(s == b.size (), "s weights required!");

// timestep size

double tau = T / M;

// Main timestepping loop

Eigen :: VectorXd mu_next(mu0. size () ) ; // next state vector
Eigen :: VectorXd tmp(mu0.size ()); // Summation vector
std :: vector<Eigen :: VectorXd> incs(s, mu_next); // RK increments

// The r.h.s. vector field for MOL ODE in standard form

// Invoking solver.solve () amounts to the application of the
// inverse of the matrix B.

auto Vf = [&solver, &A](const Eigen::VectorXd &y) —> Eigen::VectorXd {

const Eigen::VectorXd fy = —solver.solve(A = y);
LF_VERIFY_MSG(solver.info () == Eigen::Success, "Solving LSE failed");
return fy;

b
for (int k = 0; k < M; ++k) {
// First increment vector
incs[0] = Vf(muj);
// Compute increments successively, which is possible for an
explicit RK-SSM
// Simultaneous assemble next state vector
mu_next = muj + (tau +« b[0]) = incs[0];
for (int i = 1; i < s; ++i) {
// Weighted sum of already computed increments
tmp.setZero () ;
for (int j = 0; j < i; ++]) {
tmp += RK_Mat(i, j) = incs[j];
}
incs[i] = Vf(muj + tau = tmp);
// Update state by weighed sum of increments
mu_next += (tau = b[i]) = incs[i];



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SobolevEvolutionProblem/mastersolution/sobolevevolutionproblem.h

