

C++ code 9.13.27: Implementation of solve1DWavePML()

2 template <typename RECORDER = std : : f unc t i on <void (const Eigen : : VectorXd &)>>

3 Eigen : : VectorXd solve1DWavePML (

4 const Eigen : : VectorXd &zeta_0 , const Eigen : : VectorXd &gamma,

5 const Eigen : : VectorXd &sigma , unsigned i n t M, double T ,

6 RECORDER &&rec = [] (Eigen : : VectorXd & /*zeta*/) −> void { }) {

7 // Grid resolution parameter N = number of grid nodes - 1

8 const unsigned i n t N = gamma. size () − 1 ;

9 assert (N == sigma . size () − 1) ;

10 assert (2 * N + 1 == zeta_0 . size ()) ;

11 // Vector of basis expansion coefficients, contains

12 // ~ζ
(k)

13 Eigen : : VectorXd zeta { zeta_0 } ;

14 // Obtain initial velocities at grid nodes by linear interpolation

15 Eigen : : VectorXd v0 =

16 (Eigen : : VectorXd (N + 1) << 0.0 ,

17 0.5 * (zeta . segment (N + 1 , N − 1) + zeta . segment (N + 2 , N − 1)) , 0 .0)

18 . f inished () ;

19 // Discretization parameters

20 const double L = L_de fau l t ; // default width of PML layer

21 const double h = (2 .0 + 2 * L) / N; // meshwidth

22 const double tau = T / M; // size of timestep

23 // I. Initialize sparse matrices A, R ∈ R
2N+1,2N+1.

24 Eigen : : SparseMatrix <double> A(2 * N + 1 , 2 * N + 1) ;

25 Eigen : : SparseMatrix <double> R(2 * N + 1 , 2 * N + 1) ;

26 // We know that the matrix A has at most 3 non-zero entries per
row/column

27 A. reserve (Eigen : : VectorXi : : Constant (2 * N + 1 , 3)) ;

28 R. reserve (Eigen : : VectorXi : : Constant (2 * N + 1 , 3)) ;

29 // First initialize diagonal

30 A. i n s e r t (0 , 0) = h / (2 * tau) + 0.25 * h * sigma [0] ;

31 R. i n s e r t (0 , 0) = −h / (2 * tau) + 0.25 * h * sigma [0] ;

32 for (unsigned i n t i = 1 ; i < N; ++ i) {

33 A. i n s e r t (i , i) = h / tau + 0.5 * h * sigma [i] ;

34 R. i n s e r t (i , i) = −h / tau + 0.5 * h * sigma [i] ;

35 }

36 A. i n s e r t (N, N) = h / (2 * tau) + 0.25 * h * sigma [N] ;

37 R. i n s e r t (N, N) = −h / (2 * tau) + 0.25 * h * sigma [N] ;

38 for (unsigned i n t i = 0 ; i < N; ++ i) {

39 A. i n s e r t (i + N + 1 , i + N + 1) =

40 h / tau + 0.25 * h * (sigma [i] + sigma [i + 1]) ;

41 R. i n s e r t (i + N + 1 , i + N + 1) =

42 −h / tau + 0.25 * h * (sigma [i] + sigma [i + 1]) ;

43 A. i n s e r t (i , i + N + 1) = −0.5;

44 A. i n s e r t (i + 1 , i + N + 1) = 0 . 5 ;

45 R. i n s e r t (i , i + N + 1) = −0.5;

46 R. i n s e r t (i + 1 , i + N + 1) = 0 . 5 ;

47 }

48 for (unsigned i n t j = 0 ; j < N; ++ j) {

49 A. i n s e r t (j + N + 1 , j) = 0.25 * (gamma[j] + gamma[j + 1]) ;

50 A. i n s e r t (j + N + 1 , j + 1) = −0.25 * (gamma[j] + gamma[j + 1]) ;

51 R. i n s e r t (j + N + 1 , j) = 0.25 * (gamma[j] + gamma[j + 1]) ;

52 R. i n s e r t (j + N + 1 , j + 1) = −0.25 * (gamma[j] + gamma[j + 1]) ;

53 }

54 // For the sake efficiency Precompute LU factorization of A

55 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

56 so l ve r . compute (A) ;

i f (so l ve r . i n f o () != Eigen : : Success) {

