


C++ code 9.13.27: Implementation of solvelDWavePML ()

> |template <typename RECORDER = std::function<void(const Eigen::VectorXd &)>>
s | Eigen ::VectorXd solvelDWavePML (

4 const Eigen::VectorXd &zeta_0, const Eigen::VectorXd &jamma,

5 const Eigen::VectorXd &sigma, unsigned int M, double T,

6 RECORDER &&rec = [](Eigen::VectorXd & /*zetax/) —> void {}) {

7 // Grid resolution parameter N = number of grid nodes - 1

8 const unsigned int N = gamma.size () - 1;

9 assert(N == sigma.size() - 1);

10 assert(2 » N + 1 == zeta_0.size());

11 // Vector of basis expansion coefficients, contains

el /729

13 Eigen::VectorXd zeta{zeta 0};

14 // Obtain initial velocities at grid nodes by linear interpolation
15 Eigen :: VectorXd v0 =

16 (Eigen::VectorXd(N + 1) << 0.0,

17 0.5 » (zeta.segment(N + 1, N - 1) + zeta.segment(N + 2, N - 1)), 0.0)
18 .finished () ;

19 // Discretization parameters

20 const double L = L_default; // default width of PML layer
21 const double h = (2.0 + 2 « L) / N; // meshwidth

22 const double tau = T / M; // size of timestep

23 // I. Initialize sparse matrices A,R € R2N+12N+1,

24 Eigen:: SparseMatrix<double> A(2 = N + 1, 2 « N + 1);

25 Eigen :: SparseMatrix<double> R(2 « N + 1, 2 « N + 1);

26 // We know that the matrix A has at most 3 non—-zero entries per

row/column
27 A.reserve (Eigen :: VectorXi::Constant(2 « N + 1, 3));

28 R.reserve (Eigen:: VectorXi::Constant(2 = N + 1, 3));
29 // First initialize diagonal
30 A.insert (0, 0) h / (2 » tau) + 0.25 « h « sigma[0];
31 R.insert(0, 0) = -h / (2 = tau) + 0.25 = h = sigma[0];
32 for (unsigned int i = 1; i < N; ++i) {
33 A.insert(i, i) h / tau + 0.5 » h » sigma[i];
34 R.insert(i, i) = -h / tau + 0.5 = h = sigmali];
35
}
36 A.insert(N, N) = h / (2 = tau) + 0.25 « h = sigma[N];
37 R.insert(N, N) = -h / (2 « tau) + 0.25 = h « sigma[N];

38 for (unsigned int i = 0; i < N; ++i) {
39 A.insert(i + N+ 1, i + N+ 1) =
40 h / tau + 0.25 = h « (sigmali] + sigmal[i + 1]);
41 R.insert(i + N+ 1, i + N+ 1) =
42 -h / tau + 0.25 « h = (sigma[i] + sigma[i + 1]);
43 A.insert(i, i + N+ 1) = -0.5;
44 A.insert(i + 1, i + N+ 1) = 0.5;
45 R.insert(i, i + N+ 1) = -0.5;
46 R.insert(i + 1, i + N+ 1) = 0.5;
47 }
48 for (unsigned int | = 0; j < N; ++j) {
49 A.insert(j + N+ 1, j) = 0.25 « (gamma[j] + gammal[j + 1]);
50 A.insert(j + N+ 1, j + 1) = -0.25 = (gamma[j] + gammal[j + 1]);
51 R.insert(j + N+ 1, j) = 0.25 = (gammal[j] + gammal[j + 1]);
52 R.insert(j + N+ 1, j + 1) = -0.25 « (gamma[j] + gamma[j + 1]);
53
}
54 // For the sake efficiency Precompute LU factorization of A
55 Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;

56 solver.compute (A) ;




