C++ code 9.13.30: Implementation of solvelDWavePML ()

2 | std ::vector<double> trackEnergy(const Eigen::VectorXd &zeta_0,

3 const Eigen::VectorXd &jamma,

4 const Eigen::VectorXd &sigma, unsigned int M,

5 double T) {

6 // Grid resolution parameter N = number of grid nodes - 1

7 const unsigned int N = gamma.size () - 1;

8 const double L = L _default;

9 const double h = (2.0 + 2 = L) / N;

10 const double tau = T / M;

11 // Storage for energies

12 std :: vector<double> en{};

13 // Temporary storage for solution

14 Eigen :: VectorXd zeta_old(2 = N + 1);

15 // Flag telling recorder lambda function that we are at the first
timestep

16 bool first_step = true;

17 // Recorder lambda function

18 auto rec = [&](const Eigen::VectorXd &zeta) -> void {

19 if (first_step) {

20 first_step = false;

21 } else {

22 auto delta = zeta - zeta_old;

23 // Norm of discrete temporal derivative of u-component

24 double mu_d norm = 0.5 = delta[0] = delta[0];

25 for (unsigned int i = 1; i < N; ++i) {

26 mu_d_norm += delta[i] = delta[i];

27 }

28 mu_d_norm += 0.5 = delta[N] =« delta[N];

29 mu_d_norm == 0.5 = h / (tau = tau);

30 // Norm of discrete temporal derivative of v-component

31 double nu_d norm = 0.0;

32 for (unsigned int i = 0; i < N; ++i) {

33 nu_d_norm += (delta[i + N + 1] = delta[i + N + 1]) / gammal[i];

34 }

35 nu_d_norm == 0.5 = h / (tau = tau);

36 en.push_back(nu_d_norm + mu_d_norm) ;

37 }

38 zeta old = zeta;

39 };

40 (void)solveiDWavePML (zeta_0, gamma, sigma, M, T, rec);

41 return en;

a2 |}




