
C++ code 9.13.30: Implementation of solve1DWavePML()

2 std : : vector <double> trackEnergy (const Eigen : : VectorXd &zeta_0 ,

3 const Eigen : : VectorXd &gamma,

4 const Eigen : : VectorXd &sigma , unsigned i n t M,

5 double T) {

6 // Grid resolution parameter N = number of grid nodes - 1

7 const unsigned i n t N = gamma. size () − 1 ;

8 const double L = L_de fau l t ;

9 const double h = (2 .0 + 2 * L) / N;

10 const double tau = T / M;

11 // Storage for energies

12 std : : vector <double> en { } ;

13 // Temporary storage for solution

14 Eigen : : VectorXd zeta_old (2 * N + 1) ;

15 // Flag telling recorder lambda function that we are at the first
timestep

16 bool f i r s t _ s t e p = true ;

17 // Recorder lambda function

18 auto rec = [&] (const Eigen : : VectorXd &zeta) −> void {

19 i f (f i r s t _ s t e p) {

20 f i r s t _ s t e p = fa lse ;

21 } else {

22 auto de l t a = zeta − zeta_old ;

23 // Norm of discrete temporal derivative of u-component

24 double mu_d_norm = 0.5 * de l t a [0] * de l t a [0] ;

25 for (unsigned i n t i = 1 ; i < N; ++ i) {

26 mu_d_norm += de l t a [i] * de l t a [i] ;

27 }

28 mu_d_norm += 0.5 * de l t a [N] * de l t a [N] ;

29 mu_d_norm *= 0.5 * h / (tau * tau) ;

30 // Norm of discrete temporal derivative of v-component

31 double nu_d_norm = 0 . 0 ;

32 for (unsigned i n t i = 0 ; i < N; ++ i) {

33 nu_d_norm += (de l t a [i + N + 1] * de l t a [i + N + 1]) / gamma[i] ;

34 }

35 nu_d_norm *= 0.5 * h / (tau * tau) ;

36 en . push_back (nu_d_norm + mu_d_norm) ;

37 }

38 zeta_old = zeta ;

39 } ;

40 (void)solve1DWavePML (zeta_0 , gamma, sigma , M, T , rec) ;

41 return en ;

42 }

