

C++ code 9.18.21: Implementation of timestepDissipativeWaveEquation()

2 Eigen : : VectorXd timestepDissipativeWaveEquation (

3 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO2<double>> fe_space_p ,

4 double T , unsigned i n t M, Eigen : : VectorXd mu0, Eigen : : VectorXd nu0) {

5 // Pointer and reference to current mesh

6 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p = fe_space_p −>Mesh () ;

7 const l f : : mesh : : Mesh &mesh { * mesh_p } ;

8 // Obtain local->global index mapping

9 // for current finite element space

10 const l f : : assemble : : DofHandler &dofh { fe_space_p −>LocGlobMap () } ;

11 // Dimension of finite element space = number of nodes of the mesh

12 const l f : : base : : s ize_type N_dofs (dofh . NumDofs ()) ;

13 LF_VERIFY_MSG(mu0. size () == N_dofs , "Wrong length of mu0") ;

14 LF_VERIFY_MSG(nu0 . size () == N_dofs , "Wrong length of nu0") ;

15 // The solution vector at time T

16 Eigen : : VectorXd mu = mu0;

17

18 // Obtain matrices in triplet format

19 const auto [M_COO, B_COO, A_COO] = computeGalerkinMatrices (fe_space_p) ;

20 LF_VERIFY_MSG ((M_COO. cols () == N_dofs) && (M_COO. rows () == N_dofs) ,

21 "Wrong size of M") ;

22 LF_VERIFY_MSG ((B_COO. cols () == N_dofs) && (B_COO. rows () == N_dofs) ,

23 "Wrong size of B") ;

24 LF_VERIFY_MSG ((A_COO. cols () == N_dofs) && (A_COO. rows () == N_dofs) ,

25 "Wrong size of A") ;

26 // For convenience convert in CRS format in order to be able to exploit

27 // Eigen’s linear-algebra operations.

28 const Eigen : : SparseMatrix <double> M_crs {M_COO. makeSparse () } ;

29 const Eigen : : SparseMatrix <double> B_crs {B_COO. makeSparse () } ;

30 const Eigen : : SparseMatrix <double> A_crs {A_COO. makeSparse () } ;

31 // Build sparse matrices M+0.5*tau*B and M-0.5*tau*B

32 // Timestep size

33 const double tau = T / M;

34 const std : : vector <Eigen : : Tr ip le t <double>> &B_trp = B_COO. t r i p l e t s () ;

35 std : : vector <Eigen : : Tr ip le t <double>> MBp_trp = M_COO. t r i p l e t s () ;

36 std : : vector <Eigen : : Tr ip le t <double>> MBm_trp = M_COO. t r i p l e t s () ;

37 for (auto & t r i p l e t : B_trp) {

38 MBp_trp . emplace_back (t r i p l e t . row () , t r i p l e t . col () ,

39 0.5 * tau * t r i p l e t . value ()) ;

40 MBm_trp . emplace_back (t r i p l e t . row () , t r i p l e t . col () ,

41 −0.5 * tau * t r i p l e t . value ()) ;

42 }

43 Eigen : : SparseMatrix <double> MBp(N_dofs , N_dofs) ;

44 MBp. setFromTriplets (MBp_trp . begin () , MBp_trp . end ()) ;

45 Eigen : : SparseMatrix <double> MBm(N_dofs , N_dofs) ;

46 MBm. setFromTriplets (MBm_trp . begin () , MBm_trp . end ()) ;

47 // We have to solve a linear system with the matrix M+0.5*tau*B

48 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> solver_MBp ;

49 // LU decomposition, important: outside main timestepping loop

50 solver_MBp . compute (MBp) ;

51 LF_VERIFY_MSG(solver_MBp . i n f o () == Eigen : : Success ,

52 "LU decomposition of M+0.5* tau *B fa i l ed ") ;

53 // The auxiliary vector in the timestepping loop

54 Eigen : : VectorXd nu (N_dofs) ;

55 // Special initial step

56 {

57 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> solver_M ;

solver_M . compute (M_crs) ; // LU decomposition

