


C++ code 9.18.21: Implementation of timestepDissipativeWaveEquation ()

© ©® N o o B~ w0 N

Eigen ::VectorXd timestepDissipativeWaveEquation (

std :: shared_ptr<const |f ::uscalfe ::FeSpaceLagrangeO2<double>> fe_space_p,
double T, unsigned int M, Eigen::VectorXd mu0, Eigen::VectorXd nu0) {
// Pointer and reference to current mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = fe_space_p->Mesh() ;
const If ::mesh::Mesh &mesh{+mesh_p};
// Obtain local->global index mappling
// for current finite element space
const If ::assemble:: DofHandler &dofh{fe_space_p->LocGlobMap () };
// Dimension of finite element space = number of nodes of the mesh
const If ::base::size_type N_dofs(dofh.NumDofs()) ;
LF_VERIFY_MSG(mu0. size () == N_dofs, "Wrong length of mu0");
LF_VERIFY_MSG(nu0.size () == N_dofs, "Wrong length of nu0");
// The solution vector at time T
Eigen :: VectorXd mu = muO;

// Obtain matrices in triplet format
const auto [M COO, B COO, A COO] = computeGalerkinMatrices (fe_space_p) ;
LF_VERIFY_MSG ((M COO. cols () == N_dofs) & & (M COO.rows() == N_dofs),
"Wrong size of M");
LF_VERIFY_MSG ((B_COO.cols () == N_dofs) && (B COO.rows ()
"Wrong size of B");
LF_VERIFY_MSG ((A COO.cols () == N_dofs) && (A COO.rows() == N_dofs),
"Wrong size of A");
// For convenience convert in CRS format in order to be able to exploit
// Eigen’s linear-algebra operations.
const Eigen::SparseMatrix<double> M_crs{M COO. makeSparse () };
const Eigen::SparseMatrix<double> B_crs{B COO.makeSparse () };
const Eigen::SparseMatrix<double> A_crs{A COO.makeSparse () }
// Build sparse matrices M+0.5+tau*B and M-0.5*tau+B
// Timestep size
const double tau = T / M;
const std::vector<Eigen:: Triplet <double>> &B_trp = B COO. triplets () ;
std :: vector<Eigen:: Triplet <double>> MBp_trp = M COO. triplets () ;
std :: vector<Eigen:: Triplet <double>> MBm_trp = M COO. triplets () ;
for (auto &triplet : B_trp) {
MBp_trp.emplace_back(triplet.row(), triplet.col(
0.5 » tau =« triplet.value()
(
(

N_dofs) ,

3

)
)
MBm_trp.emplace_back(triplet.row(), triplet.col(),
-0.5 = tau = triplet.value());
}
Eigen :: SparseMatrix<double> MBp(N_dofs, N_dofs);
MBp.setFromTriplets (MBp_trp.begin (), MBp_trp.end());
Eigen :: SparseMatrix<double> MBm(N_dofs, N_dofs) ;
MBm. setFromTriplets (MBm_trp.begin (), MBm_trp.end() ) ;
// We have to solve a linear system with the matrix M+0.5xtaux*B
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver_MBp;
// LU decomposition, important: outside main timestepping loop
solver_MBp .compute (MBp) ;
LF_VERIFY_MSG (solver_MBp.info () == Eigen ::Success,
"LU decomposition of M+0.5«tau=B failed");
// The auxiliary vector in the timestepping loop
Eigen :: VectorXd nu(N_dofs) ;
// Special initial step
{

Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver_M;




