C++11 code 9.1.11: Implementation of twoStageRadauTimeSteppingLinScalODE ()
=+ GitLab

© ©® N o o B~ W N

std :: vector<double> twoStageRadauTimesteppingLinScalODE (unsigned int m) {

std :: vector<double> sol vec;
double step_size = 5.0 / m; // Timestep "tau"
sol_vec.push_back(1.0); // Initial value

// Discrete evolution operator: For the two-stage Radau method applied to the
// scalar linear ODE (d/dt)y = -y, this turns out to be a scalar valued
// function depending on the step size. Since we take equidistant step sizes
// in this example, the action of the evolution operator is simply
// multiplication by a constant double
double evolution_op =
(1 - (step_size +« (1 + step_size / 6.0)) /
((1 + step_size = 5.0 / 12.0) = (1 + step_size / 4.0) +
step_size « step_size / 16.0))
// Compute discrete evolution by applying the evolution operator at each step
for (int i = 1; i <m+ 1; i++) {
sol_vec.push_back(evolution_op +« sol_vec.at(i - 1));

}

return sol_vec;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/RadauThreeTimestepping/mastersolution/radauthreetimesteppingode.cc

