C++11 code 9.1.12: Implementation of testConvergenceTwoStageRadaulLinScalODE

=+ GitLab

2 | void testConvergenceTwoStageRadauLinScalODE () {

3 constexpr int nlter = 10; // total number of iterations

4 double max_norm_errors[nlter]; // errors vector for all approx. sols

5 double rates[nlter — 1]; // The rates of convergence

6 double avg_rate = 0.0; // The average rate of convergence over all iterations
7

8 // Error between the approx solutions as given by the two stage Radau method

9 // and the exact solution vector computed from the anlytic formula vector

// computed from the anlytic formula
double diff; // temporary variable used to compute error at various nodes
std :: vector<double> approx_sol_vec;
for (int k = 0; k < nlter; k++) {
unsigned int m = 10 « std::pow(2, k); // number of equidistant steps
double step_size = 5.0 / m; // time step ‘tau
// Creating exact solution vector. This vector is created by evaluating the
// exact solution using the analytic formula y(t) = exp(-t) at the
// equidistant nodes of the time steps.
std :: vector<double> exact_sol_vec;
for (int i = 0; i <m+ 1; i++) {
exact_sol_vec.push_back(std::exp(-i = step_size));
}
// Computing approximate solution
approx_sol_vec = twoStageRadauTimesteppingLinScalODE (m) ;
// Computing the error in the maximum norm
max_norm_errors[k] = 0;
for (int i = 0; i <m+ 1; i++) {
diff = std::abs(approx_sol_vec.at(i) - exact_sol_vec.at(i));
max_norm_errors[k] =
(diff > max_norm_errors[k]) ? diff : max_norm_errors[k];
}
}

// Computing rates of convergence

for (int k = 0; k < nlter — 1; k++) {
rates [Kk] log2 (max_norm_errors[k] / max_norm_errors[k + 1]);
avg_rate += rates[k];

}

avg_rate = avg_rate / (nlter - 1);



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/RadauThreeTimestepping/mastersolution/radauthreetimesteppingode.cc

