

C++11 code 9.1.22: Implementation of constructor of Radau3MOLTimestepper. ➺ GitLab

2 Radau3MOLTimestepper : : Radau3MOLTimestepper (const l f : : assemble : : DofHandler &dofh)

3 : dofh_ (dofh) {

4 std : : cout << " \ n>> Constructing SRadau3MOLTimestepper " << std : : endl ;

5 auto mesh_p = dofh . Mesh () ; // pointer to current mesh

6

7 // Instantiating Galerkin matrices to be pre-computed

8 // Dimension of finite element space

9 const l f : : usca l fe : : s ize_type N_dofs (dofh . NumDofs ()) ;

10 // Matrices in triplet format holding Galerkin matrices, zero initially.

11 l f : : assemble : : COOMatrix<double> A_COO(N_dofs ,

12 N_dofs) ; // element matrix Laplace

13 l f : : assemble : : COOMatrix<double> M_COO(N_dofs ,

14 N_dofs) ; // element mass matrix

15

16 std : : cout << "> I n i t i a l i z i n g the Galerking loca l matrices bui lders "
17 << std : : endl ;

18 // Initialize classes containing the information required for the

19 // local computations of the Galerkin matrices. Simple implementations of

20 // LinFEMassMatrixProvider and TrapRuleLinFEElemVecProvider adapted to this

21 // particular problem was written to spare some of the overhead calculations

22 // involved in the use of the more general LehrFEM++ matrices providers.

23 l f : : usca l fe : : LinearFELaplaceElementMatrix elLapMat_bui lder ;

24 LinFEMassMatrixProvider elMassMat_bui lder ;

25

26 std : : cout << "> Assembling Galerking matrices in COO format " << std : : endl ;

27 // Compute the Galerkin matrices

28 // Invoke assembly on cells (co-dimension = 0 as first argument)

29 // Information about the mesh and the local-to-global map is passed through

30 // a Dofhandler object, argument ’dofh’. This function call adds triplets to

31 // the internal COO-format representation of the sparse matrices A and M.

32 l f : : assemble : : AssembleMatrixLocally (0 , dofh , dofh , e lLapMat_bui lder , A_COO) ;

33 l f : : assemble : : AssembleMatrixLocally (0 , dofh , dofh , elMassMat_bui lder , M_COO) ;

34

35 // Enforcing zero Dirichlet boundary conditions

36 // Obtain an array of boolean flags for the vertices of the mesh: ’true’

37 // indicates that the vertex lies on the boundary.

38 auto bd_f lags { l f : : mesh : : u t i l s : : f lagEnt i t iesOnBoundary (mesh_p , 2) } ;

39 // Index predicate for the selectvals FUNCTOR of dropMatrixRowsColumns

40 auto bdy_ve r t i ces_se lec to r = [& bd_f lags , &dofh] (unsigned i n t i dx) −> bool {

41 return bd_f lags (dofh . E n t i t y (i dx)) ;

42 } ;

43 dropMatrixRowsColumns (bdy_ver t i ces_se lec to r , A_COO) ;

44 dropMatrixRowsColumns (bdy_ver t i ces_se lec to r , M_COO) ;

45

46 std : : cout << "> Converting t r i p l e t s to sparse matrices " << std : : endl ;

47 // Creating the private Galerkin stiffness and mass matrices

48 A_ = A_COO. makeSparse () ;

49 Eigen : : SparseMatrix <double> M = M_COO. makeSparse () ;

50

51 // Runge-Kutta matrices defining the 2-stage Radau timestepping. In the

52 // Butcher tableau, this corresponds to c = (1/3 1)̂ T (top-left column

53 // vector), b̂ T = (3/4 1/4) (bottom-right row vector), U_11 = 5/12, U_12 =

54 // -1/12, U_21 = 3/4, U_22 = 1/4 (top-right block); values are fixed in

55 // time

56 // clang-format off

57 U_ << 5 .0 /12 .0 , −1.0 /12.0 ,

0.75 , 0 .25 ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/RadauThreeTimestepping/mastersolution/radauthreetimestepping.cc

