C++11 code 9.1.24: Implementation of solveHeatEvolution () =* GitLab

Eigen::VectorXd solveHeatEvolution(const |f ::assemble:: DofHandler &dofh,
unsigned int m, double final_time) {
Eigen :: VectorXd discrete_heat_sol(dofh.NumbDofs() ) ;
double tau = final_time / m; // step size
const If ::uscalfe::size_type N_dofs(dofh.NumDofs()); // dim. of FE space

" "
Std::cout << IR R S S O O R O O R O O O

<< std::endl;

10 std ::cout << "\n>>> SolveHeatEvolution: m= " <<m << ", N = " << N_dofs
11 << std::endl;

12 /* Setting up the problem information */

13 // Precomputing the required data for the Runge-Kutta method

14 // Assemble the Runge-Kutta Radau IIA 2-stages method solver (order 3)

15 Radau3MOLTimestepper radau_solver(dofh);

© ©® N o o B~ w0 N

16 // Starting with the zero initial condition vector

17 Eigen :: VectorXd discrete_solution_cur =

18 radau_solver.discreteEvolutionOperator (0.0, tau,

19 Eigen :: VectorXd ::Zero(N_dofs));

20

21 std ::cout << "\n>> lterating the action of discreteEvolutionOperator"

22 << std::endl;

23 /* Evolving the parabolic heat system */

24 // While less elegant, we use a current and next step solution vector in the
25 // iteration to stay away from potential harming aliasing effects of putting
26 // an Eigen: :Vector on both sides of an assignment statement.

27 Eigen ::VectorXd discrete_solution_next;

28 for (int i =1; i <m; i++) {

29 discrete_solution_next = radau_solver.discreteEvolutionOperator (

30 i = tau, tau, discrete_solution_cur);

31 discrete_solution_cur = discrete _solution_next;

32 }

33 discrete_heat _sol = discrete_solution_cur;

34 return discrete_heat_sol;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/RadauThreeTimestepping/mastersolution/radauthreetimestepping_main.cc

