C++ code 9.2.8: Sub-problem (9-2.f): function assembleGalerkinMatrices () =* GitLab

© ©® N o o B~ w0 N

std :: pair<Eigen :: SparseMatrix<double>, Eigen::SparseMatrix<double>>
assembleGalerkinMatrices (const |f ::assemble:: DofHandler &dofh,

double cool_coeff) {
std :: pair<Eigen :: SparseMatrix<double>, Eigen :: SparseMatrix<double>>
sparse_pair;
std ::cout << ">> Constructing SDIRK2Timestepper " << std::endl;
auto mesh_p = dofh.Mesh(); // pointer to current mesh
// Instantiating Galerkin matrices to be pre-computed
// Dimension of finite element space
const If ::uscalfe ::size_type N_dofs(dofh.NumDofs() ) ;

// Obtain an array of boolean flags for the edges of the mesh: ’true’

// indicates that the edge lies on the boundary. This predicate will

// gquarantee that the computations are carried only on the boundary edges

auto bd_flags{|If ::mesh:: utils :: flagEntitiesOnBoundary (mesh_p, 1)};

// Creating predicate that will guarantee that the computations are carried

// only on the edges of the mesh using the boundary flags

auto edges_predicate = [&bd_flags](const |f ::mesh:: Entity &edge) —> bool {
return bd_flags (edge) ;

};

// Matrices in triplet format holding Galerkin matrices, zero initially.

If ::assemble :: COOMatrix<double> A COO(N_dofs, N_dofs);

If ::assemble :: COOMatrix<double> M COO(N_dofs, N_dofs) ;

std ::cout << "> Initializing the Galerking local matrices builders"
<< std::endl;

// Initialize classes containing the information required for the local
// computations of the Galerkin matrices. Simple implementations of
// LinFEMassMatrixProvider adapted to this particular problem was written to
// spare some of the overhead calculations involved in the use of the more
// general LehrFEM++ matrices providers.
If ::uscalfe ::LinearFELaplaceElementMatrix elLapMat_builder;
LinearMassEdgeMatrixProvider<decltype (edges_predicate)> el_MassEdge_builder (

edges_predicate, cool_coeff);
LinFEMassMatrixProvider elMassMat_builder;

std ::cout << "> Assembling Galerking matrices in COO format" << std::endl;
// Compute the Galerkin matrices
// Invoke assembly on cells and edges (co-dimension = 0 and 1 respectively as
// first argument). Information about the mesh and the local-to—global map is
// passed through a Dofhandler object, argument ’‘dofh’. This function call
// adds triplets to the internal COO-format representation of sparse matrices
If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, elLapMat_builder, A COO);
If ::assemble:: AssembleMatrixLocally (1, dofh, dofh, el_MassEdge_builder,

A COO) ;

If ::assemble :: AssembleMatrixLocally (0, dofh, dofh, elMassMat_builder, M COO) ;

std ::cout << "> Converting to triplets to sparse matrices" << std::endl;
// Assembling the private Galerkin matrices

Eigen :: SparseMatrix<double> A = A COO.makeSparse () ;

Eigen :: SparseMatrix<double> M = M COO. makeSparse () ;

sparse_pair = std:: make_pair(A, M);

return sparse_pair;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SDIRKMethodOfLines/mastersolution/sdirkmethodoflines.cc

