
C++ code 9.2.18: Convergence test for SDIRK-2 in the scalar case ➺ GitLab

2 double d i f f ; // temporary variable used to compute error at various nodes

3 double max_norm_errors [n I t e r] ; // errors vector for all approx. sols

4 std : : vector <double> approx_sol_vec ;

5 for (i n t k = 0; k < n I t e r ; k++) {

6 m = 10 * std : : pow(2 , k) ;

7

8 // Creating exact solution vector. This vector is created by evaluating the

9 // exact solution using the analytic formula y(t) = exp(-t) at the

10 // equidistant nodes of the time steps.

11 double s tep_s ize = 2.0 / m; // "tau" in this example

12 std : : vector <double> exact_sol_vec ;

13 for (i n t i = 0 ; i < m + 1; i ++) {

14 exact_sol_vec . push_back (std : : exp(− i * s tep_s ize)) ;

15 }

16 // Computing approximate solution

17 approx_sol_vec = sdirk2SteppingLinScalODE (m) ;

18 // Computing the error in the maximum norm

19 for (i n t i = 0 ; i < m + 1; i ++) {

20 max_norm_errors [k] = 0 ;

21 d i f f = std : : abs (approx_sol_vec . a t (i) − exact_sol_vec . a t (i)) ;

22 max_norm_errors [k] =

23 (d i f f > max_norm_errors [k]) ? d i f f : max_norm_errors [k] ;

24 }

25 }

26 // Computing rates of convergence

27 double ra tes [n I t e r − 1] ;

28 double avg_rate = 0 . 0 ;

29 for (i n t k = 0; k < n I t e r − 1 ; k++) {

30 ra tes [k] = log2 (max_norm_errors [k] / max_norm_errors [k + 1]) ;

31 avg_rate += ra tes [k] ;

32 }

33 avg_rate = avg_rate / (n I t e r − 1) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SDIRKMethodOfLines/mastersolution/sdirkmethodoflines_ode.cc

