C++ code 9.2.33: Part of main ()-function reading the mesh and running the numerical
experiment. =* GitLab

© ©® N o o B~ W N

// Load mesh into a Lehrfemt+ object

auto mesh_factory = std:: make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;

const If ::io::GmshReader reader(std::move(mesh_factory),
"meshes/square64_bnd.msh") ;

auto mesh_p = reader.mesh(); // type shared ptr< const 1f::mesh::Mesh>

// Finite element space
auto fe_space =

std :: make_shared<|f :: uscalfe :: FeSpacelLagrangeO1<double>>(mesh_p) ;
// Obtain local—>global index mapping for current finite element space
const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
// Dimension of finite element space
const If ::uscalfe::size_type N_dofs(dofh.NumDofs()) ;

// Building initial condition vector

Eigen::VectorXd initial_temperature_vec (N_dofs) ;

for (int idx = 0; idx < N_dofs; idx++) {
// Obtain coordinates of vertex at global index idx
auto coords = |f ::geometry::Corners(=(dofh.Entity (idx).Geometry())) ;
LF ASSERT MSG(coords.cols() == 1, "Wrong no of coords in vertex");
initial_temperature_vec(idx) = 5.0;

}

// SDIRK-2 evolution of parabolic problem

unsigned int m = 100;

std :: pair<Eigen::VectorXd, Eigen::VectorXd> solution_pair =
solveTemperatureEvolution (dofh, m, 1.0, initial_temperature_vec);

Eigen ::VectorXd discrete_temperature_sol = solution_pair. first;
LF_ASSERT_MSG (
discrete_temperature_sol.size () == N_dofs,

"Size of discrete solution and dimension of FE space mismatch.");
Eigen ::VectorXd energies = solution_pair.second;
LF ASSERT MSG(energies.size() == m + 1, "Wrong number of energie values.");
// Define output file format for the energies
const static Eigen::IOFormat CSVFormat(Eigen :: StreamPrecision,
Eigen:: DontAlignCols, ", ", "\n");

// Corresponding time grid for plotting
Eigen ::VectorXd time = Eigen::VectorXd::LinSpaced(m + 1, 0.0, 1.0);

// Write .csv file of energy vs. time

std :: ofstream file;

file .open("energies.csv");

file << time.transpose().format(CSVFormat) << std::endl;
file << energies.transpose () .format(CSVFormat) << std::endl;
file.close () ;

std ::cout << "Generated energies.csv" << std::endl;

// Plot from .csv file using python

systemcall :: execute (
"python3 ms_scripts/plot_energies.py energies.csv
"energies.eps") ;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SDIRKMethodOfLines/mastersolution/sdirkmethodoflines_main.cc

