
C++ code 9.4.17: Sub-problem (9-4.c): function waveLeapfrogABC() ➺ GitLab

2 Eigen : : MatrixXd waveLeapfrogABC (double c , double T , unsigned i n t N,

3 unsigned i n t m) {

4 // N is also the number of cells of the mesh

5 double h = 1.0 / N;

6 // Obtain Galerkin matrices for truncated finite element space

7 // Note that the functions get*_full return the matrices for the full finite

8 // element space including the tent function located at x=1. Removing the last

9 // row and column of that matrix amounts to dropping that basis function.

10 // However, the efficiency of this block() operation in the case of sparse

11 // matrices is in doubt, in particular, since the result is assigned to

12 // another sparse matrix, which foils Eigen’s expression template

13 // optimization. The use of "auto" would be highly advisable here!

14 Eigen : : SparseMatrix <double> A = getA_ful l (N, c , h) . block (0 , 0 , N, N) ;

15 Eigen : : SparseMatrix <double> B = getB_ful l (N, c) . block (0 , 0 , N, N) ;

16 Eigen : : SparseMatrix <double> M = getM_full (N, h) . block (0 , 0 , N, N) ;

17 // Matrix for returning solution

18 Eigen : : MatrixXd R(m + 1 , N + 1) ;

19 Eigen : : VectorXd mu = Eigen : : VectorXd : : Zero (N) ; // = mû (0)

20 Eigen : : VectorXd nu = Eigen : : VectorXd : : Zero (N) ; // = nû (-1/2)

21 Eigen : : VectorXd phi = Eigen : : VectorXd : : Zero (N) ; // = phi(t_0)

22 // Universally zero initial conditions make it possible to skip

23 // the special initial step usually required for leapfrog.

24 double tau = T / m; // Timestep size

25 // The diagonal matrix to be "inverted" in each timestep

26 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r (M + 0.5 * tau * B) ;

27 for (i n t j = 0 ; j < m; ++ j) {

28 R. row (j) . head (N) = mu. transpose () ;

29 phi (N − 1) = c * c / h * g (j * tau) ;

30 // Maybe, this can be done more efficiently by extracting the diagonal,

31 // converting it into an Eigen::Array object and then perform componentwise

32 // division. However, a really smart sparse elimination solver should be

33 // able to detect a diagonal coefficient matrices and optimize the

34 // elimination accordingly.

35 nu = so l ve r . solve (− tau * A * mu + (M − 0.5 * tau * B) * nu + tau * ph i) ;

36 mu = mu + tau * nu ;

37 }

38 R. row (m) . head (N) = mu. transpose () ;

39 // The value at x=1 has to be incorporated into the output

40 for (i n t i = 0 ; i < m + 1; ++ i) {

41 R(i , N) = g (i * tau) ;

42 }

43 return R;

44 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/1DWaveAbsorbingBC/mastersolution/1dwaveabsorbingbc.cc

