C++ code 9.4.17: Sub-problem (9-4.c): function waveLeapfrogABC () =* GitLab

© ©® N o o B~ w0 N

Eigen :: MatrixXd wavelLeapfrogABC (double c, double T, unsigned int N,
unsigned int m) {
// N is also the number of cells of the mesh
double h = 1.0 / N;
// Obtain Galerkin matrices for truncated finite element space
// Note that the functions getx full return the matrices for the full finite
// element space including the tent function located at x=1. Removing the last
// row and column of that matrix amounts to dropping that basis function.
// However, the efficiency of this block() operation in the case of sparse
// matrices is in doubt, in particular, since the result is assigned to
// another sparse matrix, which foils Eigen’s expression template
// optimization. The use of "auto" would be highly advisable here!
Eigen :: SparseMatrix<double> A = getA_full (N, ¢, h).block(0, 0, N, N);
Eigen :: SparseMatrix<double> B = getB_full (N, c).block(0, 0, N, N);
Eigen :: SparseMatrix<double> M = getM_full (N, h).block(0, 0, N, N);
// Matrix for returning solution
Eigen :: MatrixXd R(m + 1, N + 1);
Eigen :: VectorXd mu = Eigen::VectorXd::Zero(N) ; // = mu™(0)
Eigen ::VectorXd nu = Eigen::VectorXd::Zero(N) ; // = nu*(-1/2)
Eigen :: VectorXd phi = Eigen::VectorXd::Zero(N); // = phi(t_0)
// Universally zero initial conditions make it possible to skip
// the special initial step usually required for leapfrog.
double tau = T / m; // Timestep size
// The diagonal matrix to be "inverted" in each timestep
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver(M + 0.5 « tau = B);
for (int j = 0; j <m; ++j) {
R.row(j).head(N) = mu.transpose() ;
phi(N- 1) =c = ¢ / h = g(j * tau);
// Maybe, this can be done more efficiently by extracting the diagonal,
// converting it into an Eigen: :Array object and then perform componentwise
// division. However, a really smart sparse elimination solver should be
// able to detect a diagonal coefficient matrices and optimize the
// elimination accordingly.
nu = solver.solve(-tau = A = mu + (M- 0.5 » tau = B) = nu + tau « phi);
mu = mu + tau = nu;

}

R.row(m) .head (N) = mu.transpose () ;
// The value at x=1 has to be incorporated into the output
for (int i = 0; i <m+ 1; ++i) {

R(i, N) = g(i = tau);
}

return R;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/1DWaveAbsorbingBC/mastersolution/1dwaveabsorbingbc.cc

