C++11 code 9.5.20: Implementation of function solvewave () =* GitLab

© ©® N o o B~ w0 N

template <typename FUNCTION>
std :: pair<Eigen :: VectorXd, Eigen::VectorXd> solvewave (
std :: shared_ptr<I|f ::uscalfe :: UniformScalarFESpace<double>> fes_p,
FUNCTION c, const Eigen::VectorXd &uO_vec, const Eigen:: VectorXd &v0_vec,
double T, unsigned int m) {
std :: pair<Eigen :: VectorXd, Eigen::VectorXd> solution_pair;
double tau =T / m; // time step
std ::cout << "Solving with uniform step size tau = " << tau << std::endl;
progress_bar progress{std::clog, 70u, "Timestepping"};
double progress_pourcentage;
// Obtain local->global index mapping for current finite element space
const If ::assemble:: DofHandler &dofh{fes_p->LocGlobMap() };
const If ::uscalfe::size_type N_dofs(dofh.NumDofs()); // dim. of FE space size
LF_VERIFY_MSG(u0_vec.size () == N_dofs, "Wrong size of initial conditions u0");
LF_VERIFY_MSG(v0_vec.size () == N_dofs, "Wrong size of initial conditions");

// Precomputing the required data for symplectic time stepping
SympTimestepWaveEq<decltype (c)> timestepper(fes_p, c);

/* Starting the evolution using the initial conditions #*/
Eigen :: VectorXd q = u0_vec;

Eigen :: VectorXd p = v0_vec;

// Initialization to store energy at different times
Eigen ::VectorXd energies(m + 1);

/+ Iterating symplectic stepping */
for (int i = 0; i <m; i++) {
energies[i] = timestepper.computeEnergies(p, q);
timestepper.compTimestep(tau, p, q);
// Throw an exception in case of severe increase of the total
// energy, which is a conserved quantity for the exact evolution.
if (energies[i] > 10.0 = energies[0]) {
throw "ENERGY BLOW UP";
}
progress_pourcentage = ((double)i) / m » 100.0;
progress.write (progress_pourcentage / 100.0);

}

energies[m] = timestepper.computeEnergies(p, q);
solution_pair = std::make_pair(q, energies);
return solution_pair;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/SymplecticTimesteppingWaves/mastersolution/symplectictimesteppingwaves.h

