C++ code 9.6.10: Implementation of assembly for matrix M = GitLab

© ©® N o o A~ O N

| f

::assemble :: COOMatrix<double> buildM (
const std::shared_ptr<I|f ::uscalfe :: FeSpaceLagrangeO1<double>> &fe_space_p)
// I. TOOLS AND DATA
// Pointer to current fe space and mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p(fe_space_p->Mesh() ) ;
// Obtain local->global index mapping for current finite element space
const If ::assemble:: DofHandler &dofh{fe_space_p->LocGlobMap () };
// Dimension of finite element space
const If ::uscalfe ::size_type N_dofs(dofh.NumDofs()) ;

// IT : ASSEMBLY
// Matrix in triplet format holding Galerkin matrix, zero initially.
If ::assemble :: COOMatrix<double> M(N_dofs, N_dofs);
// Obtain an array of boolean flags for the edges of the mesh, ’true’
// indicates that the edge lies on the boundary
auto bd_flags{If::mesh:: utils ::flagEntitiesOnBoundary (mesh_p, 1)};
// Creating a predicate that will guarantee that the computations are carried
// only on the edges of the mesh using the boundary flags
// Actually a redundant step, because ’bdflags’ is a predicate already.
auto edges_predicate = [&bd_flags](const If ::mesh:: Entity &edge) -> bool {
return bd_flags (edge) ;
b
// Coefficient function used in the class template MassEdgeMatrixProvider
auto eta = If ::mesh:: utils :: MeshFunctionGlobal (
[1(Eigen::Vector2d x) —> double { return 1.0; });
If ::uscalfe :: MassEdgeMatrixProvider<double, decltype(eta),
decltype (edges_predicate)>
edgemat_builder(fe_space_p, eta, edges_predicate);
// Invoke assembly on edges by specifying co—-dimension = 1
If ::assemble :: AssembleMatrixLocally (1, dofh, dofh, edgemat_builder, M);
return M;

{



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BoundaryWave/mastersolution/boundarywave.cc

