
C++ code 9.6.10: Implementation of assembly for matrix M ➺ GitLab

2 l f : : assemble : : COOMatrix<double> buildM (

3 const std : : shared_ptr < l f : : usca l fe : : FeSpaceLagrangeO1<double>> &fe_space_p) {

4 // I. TOOLS AND DATA

5 // Pointer to current fe_space and mesh

6 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p (fe_space_p −>Mesh ()) ;

7 // Obtain local->global index mapping for current finite element space

8 const l f : : assemble : : DofHandler &dofh { fe_space_p −>LocGlobMap () } ;

9 // Dimension of finite element space

10 const l f : : usca l fe : : s ize_type N_dofs (dofh . NumDofs ()) ;

11

12 // II : ASSEMBLY

13 // Matrix in triplet format holding Galerkin matrix, zero initially.

14 l f : : assemble : : COOMatrix<double> M(N_dofs , N_dofs) ;

15 // Obtain an array of boolean flags for the edges of the mesh, ’true’

16 // indicates that the edge lies on the boundary

17 auto bd_f lags { l f : : mesh : : u t i l s : : flagEntitiesOnBoundary (mesh_p , 1) } ;

18 // Creating a predicate that will guarantee that the computations are carried

19 // only on the edges of the mesh using the boundary flags

20 // Actually a redundant step, because ’bdflags’ is a predicate already.

21 auto edges_predicate = [& bd_f lags] (const l f : : mesh : : E n t i t y &edge) −> bool {

22 return bd_f lags (edge) ;

23 } ;

24 // Coefficient function used in the class template MassEdgeMatrixProvider

25 auto eta = l f : : mesh : : u t i l s : : MeshFunctionGlobal (

26 [] (Eigen : : Vector2d x) −> double { return 1 . 0 ; }) ;

27 l f : : usca l fe : : MassEdgeMatrixProvider<double , decltype (eta) ,

28 decltype (edges_predicate) >

29 edgemat_bui lder (fe_space_p , eta , edges_predicate) ;

30 // Invoke assembly on edges by specifying co-dimension = 1

31 l f : : assemble : : AssembleMatrixLocally (1 , dofh , dofh , edgemat_bui lder , M) ;

32 return M;

33 } ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BoundaryWave/mastersolution/boundarywave.cc

