C++ code 9.6.17: Implementation of solveBoundaryWave () =+ GitLab

© ©® N o o B~ w0 N

template <typename FUNCTOR U, typename FUNCTOR V>
Eigen :: VectorXd solveBoundaryWave (
const std::shared_ptr<I|f ::uscalfe :: FeSpaceLagrangeO1<double>> &fe_space_p,
FUNCTOR U &&u0, FUNCTOR V &&v0, double T, unsigned int N) {
Eigen ::VectorXd bdyWaveSol;

double step_size = T / N;
// Obtain initial data
std :: pair<Eigen:: VectorXd, Eigen::VectorXd> initialData =
interpolatelnitialData <std :: function <double (Eigen :: Vector2d) >,
std :: function <double (Eigen :: Vector2d) >>(

fe_space_p, std::forward<FUNCTOR U>(u0), std::forward<FUNCTOR V>(vO0));
// Obtain Galerkin matrices
If ::assemble :: COOMatrix<double> M = buildM (fe_space_p) ;
If ::assemble :: COOMatrix<double> A = buildA (fe_space_p);
// Convert COO matrix M and A into CRS format using Eigen’s internal
// conversion routines.
Eigen:: SparseMatrix<double> M_sparse = M. makeSparse () ;
Eigen :: SparseMatrix<double> A_sparse = A.makeSparse () ;
// Compute LU decomposition of coefficient matrix of LSE to be solved in every
// step of Crank-Nicolson timestepping
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute (M_sparse + 0.25 = (step_size = step_size) = A_sparse);
LF_VERIFY_MSG(solver.info () == Eigen::Success,

"LU decomposition of M failed");

// Crank-Nicolson timestepping, first-order-system version
Eigen::VectorXd u_cur initialData . first;
Eigen :: VectorXd v_cur initialData .second;
Eigen:: VectorXd u_next, v_next;
for (int i = 1; i <N+ 1; i++) {
// step foward
v_next = solver.solve(M_sparse = v_cur -
0.25 « (step_size =« step_size) = A_sparse = v_cur —
step_size = A_sparse = u_cur);
u_next = u_cur + 0.5 » step_size = (v_cur + v_next);
// update
V_cur = v_next;
u_cur = u_next;

}
bdyWaveSol = u_cur;

return bdyWaveSol;
e



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BoundaryWave/mastersolution/boundarywave.h

