
C++ code 9.6.17: Implementation of solveBoundaryWave() ➺ GitLab

2 template <typename FUNCTOR_U, typename FUNCTOR_V>

3 Eigen : : VectorXd solveBoundaryWave (

4 const std : : shared_ptr < l f : : usca l fe : : FeSpaceLagrangeO1<double>> &fe_space_p ,

5 FUNCTOR_U &&u0 , FUNCTOR_V &&v0 , double T , unsigned i n t N) {

6 Eigen : : VectorXd bdyWaveSol ;

7

8 double s tep_s ize = T / N;

9 // Obtain initial data

10 std : : pair <Eigen : : VectorXd , Eigen : : VectorXd> i n i t i a l D a t a =

11 i n te rpo la te In i t i a lDa ta <std : : f unc t i on <double (Eigen : : Vector2d) > ,

12 std : : f unc t i on <double (Eigen : : Vector2d) >>(

13 fe_space_p , std : : forward <FUNCTOR_U>(u0) , std : : forward <FUNCTOR_V>(v0)) ;

14 // Obtain Galerkin matrices

15 l f : : assemble : : COOMatrix<double> M = buildM (fe_space_p) ;

16 l f : : assemble : : COOMatrix<double> A = buildA (fe_space_p) ;

17 // Convert COO matrix M and A into CRS format using Eigen’s internal

18 // conversion routines.

19 Eigen : : SparseMatrix <double> M_sparse = M. makeSparse () ;

20 Eigen : : SparseMatrix <double> A_sparse = A. makeSparse () ;

21 // Compute LU decomposition of coefficient matrix of LSE to be solved in every

22 // step of Crank-Nicolson timestepping

23 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

24 so l ve r . compute (M_sparse + 0.25 * (s tep_s ize * s tep_s ize) * A_sparse) ;

25 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success ,

26 "LU decomposition of M fa i l ed ") ;

27

28 // Crank-Nicolson timestepping, first-order-system version

29 Eigen : : VectorXd u_cur = i n i t i a l D a t a . f i r s t ;

30 Eigen : : VectorXd v_cur = i n i t i a l D a t a . second ;

31 Eigen : : VectorXd u_next , v_next ;

32 for (i n t i = 1 ; i < N + 1; i ++) {

33 // step foward

34 v_next = so l ve r . solve (M_sparse * v_cur −

35 0.25 * (s tep_s ize * s tep_s ize) * A_sparse * v_cur −

36 s tep_s ize * A_sparse * u_cur) ;

37 u_next = u_cur + 0.5 * s tep_s ize * (v_cur + v_next) ;

38 // update

39 v_cur = v_next ;

40 u_cur = u_next ;

41 }

42 bdyWaveSol = u_cur ;

43 return bdyWaveSol ;

44 } ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/BoundaryWave/mastersolution/boundarywave.h

