

C++ code 9.7.16: Implementation of the constructor of WaveABC2DTimestepper = GitLab

© ©® N o o B~ w0 N

template <typename FUNC RHO, typename FUNC_MUO, typename FUNC_NUO>

WaveABC2DTimestepper<FUNC_RHO, FUNC_MUO0, FUNC_NUO>::WaveABC2DTimestepper (
const std::shared_ptr<I|f ::uscalfe :: FeSpaceLagrangeO1<double>> &fe_space_p,
FUNC_RHO rho, unsigned int M, double T)

: fe_space_p_(fe_space_p),
M_(M)
T_(T),
step_size_(T / M),
timestepping_performed_ (false) ({
/# Creating coefficient—functions as Lehrfem++ mesh functions x/
// Coefficient—functions used in the class template

// ReactionDiffusionElementMatrixProvider and MassEdgeMatrixProvider

auto rho_mf = If ::mesh:: utils :: MeshFunctionGlobal (rho) ;
auto zero_mf = If ::mesh:: utils :: MeshFunctionGlobal (

[1¢(i) —> double { return 0.0; });
auto one_mf = If ::mesh:: utils :: MeshFunctionGlobal (

[1(i) —> double { return 1.0; });

// On construction no timestepping was yet performed
std ::cout << "Assembling Galerkin matrices..." << std::endl;
If ::assemble :: COOMatrix<double> A COO = computeGalerkinMat (

fe_space_p, one_mf, zero_mf, zero_mf); // stiffness matrix
If ::assemble :: COOMatrix<double> M COO =

computeGalerkinMat (fe_space_p, zero_mf, rho_mf, zero_mf); // Mass matrix
If ::assemble :: COOMatrix<double> B COO =

computeGalerkinMat (fe_space_p, zero_mf, zero_mf,

one_mf); // Boundary mass matrix

const If ::assemble:: DofHandler &dofh{fe_space_p->LocGlobMap() };
N_dofs_ = dofh.NumDofs () ;
std ::cout << "Number of degrees of freedom

<< N_dofs_ << std::endl;
std ::cout << "Assembling the evolution matrix..." << std::endl;
/+ Assemble the full linear system matrix of the stepping method x/

/%

// L = | M+(1/2)+tausB (1/2) +tausd |
// | —(1/2)*tau*I I]
// */

If ::assemble :: COOMatrix<double> L COO(2 = N_dofs_, 2 = N_dofs_);
A_triplets_vec_ = A COO. triplets () ;
M_triplets_vec_ = M COO. triplets () ;
const std::vector< i <double>> B_triplets_vec = B COO. triplets () ;
// Inserting M in L
for (auto &triplet : M_triplets_vec_) {

L COO.AddToEntry(triplet . (), triplet. (), triplet.value());
}
// Inserting B in L
for (auto &triplet : B_triplets_vec) {

L COO.AddToEntry(triplet . (), triplet. (),

0.5 » step_size_ =« triplet.value());

}
// Inserting A in L
for (auto &triplet : A_triplets_vec_) {

L COO.AddToEntry(triplet . (), triplet. () + N_dofs_,

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/WaveABC2D/mastersolution/waveabc2d.h

