C++ code 9.7.17:

ABC2DTimestepper =* GitLab

template <typename FUNC RHO, typename FUNC _MUO, typename FUNC_NUO>
Eigen ::VectorXd WaveABC2DTimestepper<FUNC_RHO, FUNC_MUO,

© ©® N o o B~ W N

Implementation of the method solveWaveABC2D () of

Wave-

}

FUNC_NUO> : : solveWaveABC2D (

FUNC_MUO muO,
FUNC_NUO nu0)

std ::cout << "\nSolving variational problem of WavweABC2D." << std::endl;

Eigen::VectorXd sol;

// Initial conditions
auto mf_mu0 = If ::mesh:: utils :: MeshFunctionGlobal (mu0) ;
auto mf_nu0 = If ::mesh:: utils :: MeshFunctionGlobal (nu0) ;
Eigen :: VectorXd nu0O_nodal

If ::fe::NodalProjection («fe_space_p_, mf_nu0);

Eigen :: VectorXd muO_nodal = If ::fe::NodalProjection («fe_space_p_, mf_mu0) ;

// Setup loop and tools

Eigen ::VectorXd cur_step_vec(2 = N_dofs_);

Eigen ::VectorXd next_step_vec(2 » N_dofs_);
cur_step_vec.head(N_dofs_) = nu0O_nodal;

cur_step_vec. tail (N_dofs_) = muO_nodal;

std ::cout << "Performing discrete evolution..." << std::endl;
progress_bar progress{std::clog, 55u, "Timestepping"};
double progress_pourcentage;

// Performing timesteps

for (int i =1; i <M_; i++) {
next_step_vec = solver_.solve(R_ = cur_step_vec);
cur_step_vec = next_step_vec;

// Display progress
progress_pourcentage = ((double)i + 1.0) / M_ +« 100.0;
progress.write (progress_pourcentage / 100.0);

}

full_sol_ = cur_step_vec;

sol = full_sol_.tail (N_dofs_);
// Full solution 1is computed
timestepping_performed_ = true;

return sol;
// solveWaveABC2D



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/WaveABC2D/mastersolution/waveabc2d.h

