C++ code 9.8.28: Implementation of class KineticPropagator = GitLab

KineticPropagator :: KineticPropagator (const SparseMatrixXd &A,
const SparseMatrixXcd &M, double tau) {

// Defeats the rationale of expression templates, but acceptable here,

because
// executed only once in the constructor.
B_plus_ =M+ 0.5 = tau « A.cast<std::complex<double>>();
SparseMatrixXcd B_minus = M - 0.5 « tau = A.cast<std::complex<double>>();
// This 1is the expensive step: LU-factorization of a big sparse
matrix.

// Precomputation is essential
solver_ .compute (B_minus) ;

}

Eigen :: VectorXcd KineticPropagator:: operator () (
const Eigen::VectorXcd &mu) const {

// Cheap elimination steps operating on the LU-factors. Effort is
almost O (N)

// thanks to sophisticated fill—-in avoiding techniques employed by the

sparse
// solvers.

return solver_.solve(B_plus_ » mu);

}



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/NonLinSchroedingerEquation/mastersolution/propagator.cc

