

C++ code 9.8.33: Solver for nonlinear Schrödinger equation ➺ GitLab

2 // Load mesh and initalize FE space and DOF handler

3 auto mesh_factory = std : : make_unique< l f : : mesh : : hybr id2d : : MeshFactory >(2) ;

4 const l f : : i o : : GmshReader reader (std : : move(mesh_factory) ,

5 "meshes/ square_64 .msh") ;

6 auto mesh_p = reader . mesh () ;

7 auto fe_space =

8 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh_p) ;

9 const l f : : assemble : : DofHandler &dofh { fe_space −>LocGlobMap () } ;

10 const l f : : usca l fe : : s ize_type N_dofs (dofh . NumDofs ()) ;

11

12 // Mass matrix

13 l f : : assemble : : COOMatrix<double> D_COO(N_dofs , N_dofs) ;

14 NonLinSchroedingerEquation : : MassElementMatr ixProvider mass_emp ;

15 l f : : assemble : : AssembleMatr ixLocal ly (0 , dofh , dofh , mass_emp , D_COO) ;

16 Eigen : : SparseMatrix <double> D = D_COO. makeSparse () ;

17 Eigen : : SparseMatrix <std : : complex<double>> M = std : : complex<double >(0 , 1) * D;

18

19 // Stiffness matrix

20 l f : : assemble : : COOMatrix<double> A_COO(N_dofs , N_dofs) ;

21 l f : : usca l fe : : LinearFELaplaceElementMatr ix s t i f fness_emp ;

22 l f : : assemble : : AssembleMatr ixLocal ly (0 , dofh , dofh , s t i f fness_emp , A_COO) ;

23 Eigen : : SparseMatrix <double> A = A_COO. makeSparse () ;

24

25 // Prepare timestepping

26 i n t t imesteps = 100;

27 double T = 1 . 0 ;

28 double tau = T / t imesteps ;

29

30 // Prepare inital data

31 const double PI = 3.14159265358979323846;

32 auto u0 = [PI] (Eigen : : Vector2d x) −> double {

33 return 4.0 * std : : cos (PI * x (0)) * std : : cos (PI * x (1)) ;

34 } ;

35 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_u0 { u0 } ;

36 Eigen : : VectorXcd mu = l f : : fe : : Noda lPro jec t ion (* fe_space , mf_u0) ;

37

38 // Prepare split-step propagator for full step τ

39 NonLinSchroedingerEquation : : SplitStepPropagator sp l i tS tepPropaga to r (A, M,

40 tau) ;

41

42 // Arrays for storing "energies" contributing to the Hamiltonian

43 Eigen : : VectorXd norm (t imesteps + 1) ;

44 Eigen : : VectorXd E_kin (t imesteps + 1) ;

45 Eigen : : VectorXd E_in t (t imesteps + 1) ;

46 // Timestepping

47 for (i n t j = 0 ; j < t imesteps ; ++ j) {

48 // Compute norm and energy along the solution

49 norm (j) = NonLinSchroedingerEquation : : Norm(mu, D) ;

50 E_kin (j) = NonLinSchroedingerEquation : : K inet icEnergy (mu, A) ;

51 E_in t (j) = NonLinSchroedingerEquation : : I n te rac t i onEnergy (mu, D) ;

52 // Timestep tau according to Strang splitting

53 mu = sp l i tS tepPropaga to r (mu) ;

54 }

55 norm (t imesteps) = NonLinSchroedingerEquation : : Norm(mu, D) ;

56 E_kin (t imesteps) = NonLinSchroedingerEquation : : K inet icEnergy (mu, A) ;

57 E_in t (t imesteps) = NonLinSchroedingerEquation : : I n te rac t i onEnergy (mu, D) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/NonLinSchroedingerEquation/mastersolution/nonlinschroedingerequation_main.cc

