

C++ code 9.8.33: Solver for nonlinear Schréodinger equation =+ GitLab

// Load mesh and initalize FE space and DOF handler

auto mesh_factory = std:: make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;

const If ::io::GmshReader reader(std::move(mesh_factory),
"meshes/square_64.msh") ;

auto mesh_p = reader.mesh() ;

auto fe_space =

std :: make_shared<|f :: uscalfe :: FeSpacelLagrangeO1<double>>(mesh_p) ;
const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
10 const If ::uscalfe::size_type N_dofs(dofh.NumDofs());

© ©® N o o B~ w0 N

12 // Mass matrix

13 If ::assemble :: COOMatrix<double> D _COO(N_dofs, N_dofs);

14 NonLinSchroedingerEquation :: MassElementMatrixProvider mass_emp;

15 If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, mass_emp, D_COO) ;

16 i <double> D = D COO.makeSparse () ;

17 i <std ::complex<double>> M = std ::complex<double>(0, 1) = D;

19 // Stiffness matrix
20 If ::assemble :: COOMatrix<double> A COO(N_dofs, N_dofs);

21 If ::uscalfe ::LinearFELaplaceElementMatrix stiffness_emp;
22 If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, stiffness_emp, A COO);
23 i <double> A = A COO.makeSparse () ;

25 // Prepare timestepping
26 int timesteps = 100;

27 double T = 1.0;

28 double tau = T / timesteps;

3 |// Prepare inital data
31 const double Pl = 3.14159265358979323846;

32 auto u0 = [PI](i x) —> double {

33 return 4.0 = std::cos(Pl = x(0)) = std::cos(PIl = x(1));

34 };

35 If ::mesh:: utils :: MeshFunctionGlobal mf_u0{u0};

36 o mu = |f ::fe::NodalProjection (»fe_space, mf_u0);

38 // Prepare split-step propagator for full step T
39 NonLinSchroedingerEquation :: SplitStepPropagator splitStepPropagator (A, M,

40 tau) ;

41

42 // Arrays for storing "energies" contributing to the Hamiltonian
43 o (timesteps + 1);

44 - E_Kin(timesteps + 1);
i E_int(timesteps + 1);
46 // Timestepping

47 for (int j = 0; j < timesteps; ++j) {
48 // Compute norm and energy along the solution
49 (j) = NonLinSchroedingerEquation ::Norm(mu, D) ;
50 E_kin(j) = NonLinSchroedingerEquation :: KineticEnergy (mu, A);
51 E_int(j) = NonLinSchroedingerEquation ::InteractionEnergy (mu, D);
52 // Timestep tau according to Strang splitting
53 mu = splitStepPropagator (mu) ;
54
}
55 (timesteps) = NonLinSchroedingerEquation ::Norm(mu, D) ;

56 E_kin(timesteps) = NonLinSchroedingerEquation :: KineticEnergy (mu, A);
57 E_int(timesteps) = NonLinSchroedingerEquation ::InteractionEnergy (mu, D) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/NonLinSchroedingerEquation/mastersolution/nonlinschroedingerequation_main.cc

