
C++ code 9.9.13: Implementation of assembleGalerkinMatrices ➺ GitLab

2 template <typename DIFF_COEFF>

3 std : : pair <Eigen : : SparseMatrix <double > , Eigen : : SparseMatrix <double>>

4 assembleGalerkinMatrices (const l f : : assemble : : DofHandler &dofh , DIFF_COEFF &&c) {

5 std : : pair <Eigen : : SparseMatrix <double > , Eigen : : SparseMatrix <double>> A_M;

6 // Obtain mesh and finite element space

7 std : : shared_ptr <const l f : : mesh : : Mesh> mesh = dofh . Mesh () ;

8 const l f : : usca l fe : : s ize_type N_dofs (dofh . NumDofs ()) ;

9 auto fe_space =

10 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh) ;

11

12 // Matrix format for assembly

13 l f : : assemble : : COOMatrix<double> A_COO(N_dofs , N_dofs) ;

14 l f : : assemble : : COOMatrix<double> M_COO(N_dofs , N_dofs) ;

15

16 // Function handles for Stiffness and Mass matrix

17 auto one = [] (Eigen : : Vector2d x) −> double { return 1 . 0 ; } ;

18 auto zero = [] (Eigen : : Vector2d x) −> double { return 0 . 0 ; } ;

19

20 // Mesh functions

21 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_c { c } ;

22 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_one { one } ;

23 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_zero { zero } ;

24

25 // Element matrix provider

26 l f : : usca l fe : : ReactionDiffusionElementMatrixProvider <double , decltype (mf_c) ,

27 decltype (mf_zero) >

28 e l M a t _ S t i f f (fe_space , mf_c , mf_zero) ;

29 l f : : usca l fe : : ReactionDiffusionElementMatrixProvider <double , decltype (mf_zero) ,

30 decltype (mf_one) >

31 elMat_Mass (fe_space , mf_zero , mf_one) ;

32

33 // Assembly

34 l f : : assemble : : AssembleMatr ixLocal ly (0 , dofh , dofh , e l M a t _ S t i f f , A_COO) ;

35 l f : : assemble : : AssembleMatr ixLocal ly (0 , dofh , dofh , elMat_Mass , M_COO) ;

36

37 // Sparse matrix format

38 Eigen : : SparseMatrix <double> A = A_COO. makeSparse () ;

39 Eigen : : SparseMatrix <double> M = M_COO. makeSparse () ;

40

41 A_M = std : : make_pair (A, M) ;

42

43 return A_M;

44 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/FisherKPP/mastersolution/fisherkpp.cc

