

C++ code 9.9.37: Implementation of modelproblem() ➺ GitLab

2 void modelproblem () {

3 std : : cout << "You are running the model problem , i . e . you solve the Fisher "
4 " equation on the model domain . "
5 << std : : endl ;

6 // Obtain mesh

7 auto mesh_factory = std : : make_unique< l f : : mesh : : hybr id2d : : MeshFactory >(2) ;

8 const l f : : i o : : GmshReader reader (std : : move(mesh_factory) , "meshes/ is land .msh") ;

9 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p = reader . mesh () ;

10 // Finite Element Space

11 auto fe_space =

12 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh_p) ;

13 // Dofhandler

14 const l f : : assemble : : DofHandler &dofh { fe_space −>LocGlobMap () } ;

15 const l f : : usca l fe : : s ize_type N_dofs (dofh . NumDofs ()) ;

16 // Initial Population density

17 Eigen : : VectorXd u0 (N_dofs) ;

18 u0 . setZero () ;

19 u0 (321) = 0 . 3 ;

20 u0 (567) = 0 . 3 ;

21

22 // Diffusion Coefficient

23 auto c = [] (Eigen : : Vector2d x) −> double { return 1 . 2 ; } ;

24 double lambda = 2 . 1 ; // Growth Factor

25 // Carrying capacity

26 Eigen : : VectorXd K{0 .8 * Eigen : : VectorXd : : Ones (N_dofs) } ;

27 // Time Steps

28 unsigned i n t m = 100;

29 double T = 1 . ;

30

31 // Compute the solution with method of lines and Strang splitting

32 S t r a n g S p l i t S t r a n g S p l i t t e r (fe_space , T , m, lambda , c) ;

33 // Five snapshots

34 std : : vector <Eigen : : VectorXd> so l ;

35 std : : cout << "Computing solut ion a f te r 100 timesteps . . . " << std : : endl ;

36 so l . push_back (S t r a n g S p l i t t e r . Evo lu t i on (K, u0)) ;

37 // Uncomment the following calls to StrangSplitter.Evolution in order

38 // to solve for a longer evolution.

39 /*std::cout << "Computing solution after 200 timesteps..." << std::endl;

40 sol.push_back(StrangSplitter.Evolution(K, sol[0]));

41 std::cout << "Computing solution after 300 timesteps..." << std::endl;

42 sol.push_back(StrangSplitter.Evolution(K, sol[1]));

43 std::cout << "Computing solution after 400 timesteps..." << std::endl;

44 sol.push_back(StrangSplitter.Evolution(K, sol[2]));

45 std::cout << "Computing solution after 500 timesteps..." << std::endl;

46 sol.push_back(StrangSplitter.Evolution(K, sol[3]));*/

47

48 // Use VTK-Writer for Visualization of solution.

49 std : : cout << " Wr i t t ing solut ion (s) in VTK format . " << std : : endl ;

50 std : : cout << std : : size (so l) << std : : endl ;

51 for (i n t k = 0; k < std : : size (so l) ; k++) {

52 std : : s t r i ngs t ream f i lename ;

53 f i lename << "model_problem_sol " << k + 1 << " . vtk " ;

54 l f : : i o : : V tkWr i te r v t k _ w r i t e r (mesh_p , f i lename . s t r ()) ;

55 auto nodal_data = l f : : mesh : : u t i l s : : make_CodimMeshDataSet<double >(mesh_p , 2) ;

56 for (i n t g loba l_ i dx = 0; g l oba l_ i dx < N_dofs ; g l oba l_ i dx ++) {

57 nodal_data −>operator () (dofh . E n t i t y (g l oba l_ i dx)) = so l [k] [g l oba l_ i dx] ;

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/FisherKPP/mastersolution/fisherkpp_main.cc

