


C++ code 9.9.37: Implementation of modelproblem () = GitLab

void modelproblem () {
std ::cout << "You are running the model problem, i.e. you solve the Fisher "
"equation on the model domain. "
<< std::endl;
// Obtain mesh
auto mesh_factory = std::make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;
const If ::io::GmshReader reader(std::move(mesh_factory), "meshes/island.msh");
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = reader.mesh() ;
10 // Finite Element Space
11 auto fe_space =
12 std :: make_shared<|f :: uscalfe :: FeSpaceLagrangeO1<double>>(mesh_p) ;
13 // Dofhandler
14 const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
15 const If ::uscalfe ::size_type N_dofs(dofh.NumDofs()) ;
16 // Initial Population density
17 Eigen :: VectorXd uO(N_dofs) ;

© ©® N o o B~ w0 N

18 u0.setZero () ;
19 u0(321) = 0.3;
20 u0(567) = 0.3;

22 // Diffusion Coefficient

23 auto ¢ = [](Eigen::Vector2d x) -> double { return 1.2; };
24 double lambda = 2.1; // Growth Factor

25 // Carrying capacity

26 Eigen :: VectorXd K{0.8 = Eigen::VectorXd::Ones(N_dofs)};

27 // Time Steps

28 unsigned int m = 100;

29 double T = 1.;

31 // Compute the solution with method of lines and Strang splitting
32 StrangSplit StrangSplitter (fe_space, T, m, lambda, c);
3 // Five snapshots

34 std :: vector<Eigen :: VectorXd> sol;

35 std :: cout << "Computing solution after 100 timesteps...
36 sol.push_back(StrangSplitter.Evolution (K, u0));

<< std::endl;

37 // Uncomment the following calls to StrangSplitter.Evolution in order

38 // to solve for a longer evolution.

39 /#std: :cout << "Computing solution after 200 timesteps..." << std::endl;
40 sol.push back (StrangSplitter.Evolution (K, sol[0]));

41 std: :cout << "Computing solution after 300 timesteps..." << std::endl;

42 sol.push back (StrangSplitter.Evolution(K, sol[1]));

43 std: :cout << "Computing solution after 400 timesteps..." << std::endl;
44 sol.push back (StrangSplitter.Evolution (K, sol[2]));

45 std: :cout << "Computing solution after 500 timesteps..." << std::endl;

46 sol.push back (StrangSplitter.Evolution (K, sol[3]));*/

48 // Use VIK-Writer for Visualization of solution.

49 std ::cout << "Writting solution(s) in VIK format." << std::endl;

50 std ::cout << std::size(sol) << std::endl;

51 for (int k = 0; k < std::size(sol); k++) {

52 std :: stringstream filename;

53 filename << "model_problem_sol" << k + 1 << ".vtk";

54 If::io:: VtkWriter vtk_writer (mesh_p, filename.str());

55 auto nodal_data = If ::mesh:: utils :: make_CodimMeshDataSet<double >(mesh_p, 2);
56 for (int global_idx = 0; global_idx < N_dofs; global_idx++) {

57 nodal_data->operator () (dofh. Entity (global_idx)) = sol[k][global_idx];



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/https://github.com/erickschulz/NPDECODES/blob/master/homeworks/FisherKPP/mastersolution/fisherkpp_main.cc

