

ETH Lecture 401-0663-00L Numerical Methods for PDEs

Endterm Exam

Spring Term 2018

29. May 2018, 15:15, HG F 1

Don't
panic!

Family Name		%
First Name		
Department		
Legi Nr.		
Date	29. May 2018	

Points:

	1	2	3	4	Total
max	3	3	3	3	12
achvd					

- This is a **closed-book exam**.
- Keep only writing material and Legi on the table.
- Keep mobile phones, tablets, smartwatches, etc. turned off in your bag.
- Fill in this cover sheet first.
- Turn the cover sheet only when instructed to do so.
- Then write your name and Legi Nr. on each page.
- **Write your answers in the appropriate fields on these problem sheets.**
- **Wrong ticks in multiple-choice boxes will lead to points being subtracted.**
- **Anything written outside the answer boxes will not be taken into account.**
- Do not write with red/green color or with pencil.
- Make sure to hand in every sheet.
- Two blank pages at the end of the exam: space for notes
- **Duration: 30 minutes.**

Problem 1: Convergence of finite element Galerkin solutions (3 pts)

Problem related to [Lecture → Chapter 5] “Convergence and Accuracy” (of finite element solutions).

This is a **multiple-choice task**. Wrong ticks incur point penalty.

On the unit square $\Omega :=]0, 1[^2$ we consider a sequence of nested triangular meshes

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \cdots \prec \mathcal{M}_j \prec \cdots$$

generated by global regular refinement of an initial mesh \mathcal{M}_0 .

We write $u_N^{(j)} \in \mathcal{S}_1^0(\mathcal{M}_j)$, where j is for mesh \mathcal{M}_j , for the finite element Galerkin solution of the Dirichlet problem

$$\Delta u = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \partial\Omega, \quad (0.1.1)$$

where f and g is chosen so that we get as exact solution

$$u(x) = \exp(x_1^2 + x_2^2), \quad x \in \Omega.$$

Which is the asymptotic behavior of

1. $\epsilon_1(j) := \|u - u_N^{(j)}\|_{H^1(\Omega)}$ in terms of the meshwidth $h_{\mathcal{M}} \rightarrow 0$:

$$\epsilon_1 = \quad \bigcirc \quad O(h) \quad , \quad \bigcirc \quad O(h^2) \quad , \quad \bigcirc \quad O(h^3) \quad , \quad ?$$

2. $\epsilon_2(j) := \|u_N^{(j)}\|_{H^1(\Omega)}^2 - \|u_N^{(j-1)}\|_{H^1(\Omega)}^2$ in terms of the meshwidth $h_{\mathcal{M}} \rightarrow 0$:

$$\epsilon_2 = \quad \bigcirc \quad O(h) \quad , \quad \bigcirc \quad O(h^2) \quad , \quad \bigcirc \quad O(h^3) \quad , \quad ?$$

3. $\epsilon_3(j) := \|u_N^{(j)} - u_N^{(j-1)}\|_{L^2(\Omega)}$ in terms of $N := \dim \mathcal{S}_{2,0}^0(\mathcal{M}) \rightarrow \infty$:

$$\epsilon_3 = \quad \bigcirc \quad O(N^{-\frac{1}{2}}) \quad , \quad \bigcirc \quad O(N^{-1}) \quad , \quad \bigcirc \quad O(N^{-\frac{3}{2}}) \quad , \quad \bigcirc \quad O(N^{-2}) \quad ?$$

HINT 1 for (1.): Recall that $\|v\|_{H^1(\Omega)}^2 = \int_{\Omega} \|\mathbf{grad} v(x)\|^2 dx$.

SOLUTION of (1.):

1. The norm $\|\cdot\|_{H^1(\Omega)}$ is the **energy norm** induced by the variational problem underlying (0.1.1). Thus we can count on the optimality of the finite element Galerkin solution according to [Lecture → Thm. 5.1.15].

To estimate the best approximation error we rely on [Lecture → Thm. 5.3.56] and this theorem gives $O(h^2)$, because the exact solution u is smooth for this problem, such that the rate of convergence is limited by the polynomial degree of the finite element space.

2. Recall the formula “ $a^2 - b^2 = (a + b)(a - b)$ ” for symmetric bilinear forms from [Lecture → § 5.8.9], which yields

$$\|u_N^{(j)}\|_{H^1(\Omega)}^2 - \|u_N^{(j-1)}\|_{H^1(\Omega)}^2 = \int_{\Omega} \mathbf{grad}(u_N^{(j)} + u_N^{(j-1)}) \cdot \mathbf{grad}(u_N^{(j)} - u_N^{(j-1)}) dx.$$

Then apply the Cauchy-Schwarz inequality for integrals

$$\left| \left| u_N^{(j)} \right|_{H^1(\Omega)}^2 - \left| u_N^{(j-1)} \right|_{H^1(\Omega)}^2 \right| \leq \left| u_N^{(j)} + u_N^{(j-1)} \right|_{H^1(\Omega)} \left| u_N^{(j)} - u_N^{(j-1)} \right|_{H^1(\Omega)}$$

together with the result of 1, which gives

$$\left| \left| u_N^{(j)} \right|_{H^1(\Omega)}^2 - \left| u_N^{(j-1)} \right|_{H^1(\Omega)}^2 \right| = O(h^2) \quad \text{for } h \rightarrow 0.$$

3. On the unit square the Dirichlet problem for $-\Delta$ is **2-regular**, cf. [Lecture \rightarrow Ass. 5.6.23]. Therefore, we can use the $L^2(\Omega)$ -estimates of [Lecture \rightarrow § 5.6.24], which yields

$$\|u - u_N^{(j)}\|_{L^2(\Omega)} = O(h^3) \quad \text{for } h \rightarrow 0.$$

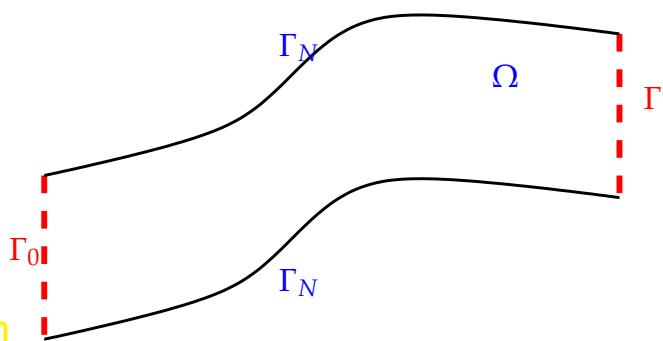
Combine this with the triangle inequality and the fact that $N \approx h^{-2}$ for uniform refinement in two dimensions and obtain $\|u_N^{(j)} - u_N^{(j-1)}\|_{L^2(\Omega)} = O(N^{-\frac{3}{2}})$ for $h \rightarrow 0$.

End Problem 1

Problem 2: Output functional (3 pts)

Problem related to [Lecture → Section 5.6] “Duality techniques”.

Fig. 1



If $u \in H^1(\Omega)$ solves

$$\begin{aligned} -\Delta u &= f \in L^2(\Omega) \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \Gamma_0 \cup \Gamma_1, \quad \mathbf{grad} u \cdot \mathbf{n} = 0 \quad \text{on } \Gamma_N, \end{aligned}$$

then we have

$$\int_{\Gamma_0} \mathbf{grad} u \cdot \mathbf{n} \, dS = \int_{\Omega} \mathbf{grad} u \cdot \mathbf{grad} \Psi - f \Psi \, dx, \quad (0.2.1)$$

for *suitable* functions $\Psi : \Omega \rightarrow \mathbb{R}$.

(2.a) (1 pts) What is the largest possible Sobolev space that Ψ can belong to?

$$\Psi \in \boxed{\quad}.$$

SOLUTION of (2.a):

On one hand, the right-hand side integral in (0.2.1) must be well-defined for any $u \in H_0^1(\Omega)$. This is guaranteed, if $\mathbf{grad} \Psi \in L^2(\Omega)$ and $\Psi \in L^2(\Omega)$. On the other hand, if $\mathbf{grad} \Psi \notin L^2(\Omega)$ we can find $u \in H_0^1(\Omega)$ such that the integral will blow up.

As a consequence, we need $\Psi \in H^1(\Omega)$.

(2.b) (2 pts) Which boundary conditions does Ψ have to satisfy necessarily to make (0.2.1) hold?

$$\Psi|_{\partial\Omega} = \begin{cases} \boxed{\quad} & \text{on } \Gamma_0, \\ \boxed{\quad} & \text{on } \Gamma_1, \\ \boxed{\quad} & \text{on } \Gamma_N. \end{cases}$$

HINT 1 for (2.b): Green's formula reads

$$\int_{\partial\Omega} \Psi \mathbf{grad} u \cdot \mathbf{n} \, dS = \int_{\Omega} \mathbf{grad} u \cdot \mathbf{grad} \Psi + \Delta u \Psi \, dx. \quad (0.2.2)$$

SOLUTION of (2.b):

The arguments are the same as in [Lecture → Section 5.6.2], where we derived an equivalent continuous boundary flux functional [Lecture → Eq. (5.6.15)]. From (0.2.2) we see that (0.2.1) will only hold, if $\Psi|_{\Gamma_0} \equiv 1$ and $\Psi|_{\Gamma_1} \equiv 0$. On Γ_N the value of Ψ does not matter, because there $\mathbf{grad} u \cdot \mathbf{n} \equiv 0$.

Summing up,

$$\Psi|_{\partial\Omega} = \begin{cases} 1 & \text{on } \Gamma_0, \\ 0 & \text{on } \Gamma_1, \\ \text{any value} & \text{on } \Gamma_N. \end{cases}$$

End Problem 2

Problem 3: Unconditionally stable timestepping (3 pts)

Problem related to [Lecture → Section 6.1.7] “Timestepping for method-of-lines ODE”.

A class of Runge-Kutta single-step methods (RK-SSM) parameterized by $\theta \in [0, 1]$ has the **stability function** (\rightarrow [Lecture → Eq. (6.1.127a)])

$$S_\theta(z) = \frac{1 + (1 - \theta)z}{1 - \theta z}, \quad 0 \leq \theta \leq 1.$$

We use these RK-SSM for timestepping in a finite-element method-of-lines framework for the parabolic evolution equation $\frac{\partial u}{\partial t} - \Delta u = f(x, t)$.

For which values of θ is there **no** stability-induced timestep constraint?

$$\theta \in \boxed{\quad}.$$

HINT 2 for (3.): A Runge-Kutta single-step method (RK-SSM) applied to the scalar ODE $\dot{y} = \lambda y$, $\lambda < 0$, with uniform timestep $\tau > 0$ produces a sequence $(y^{(j)})_{j=0}^\infty$ according to

$$y^{(j)} = S(\lambda \tau) y^{(j-1)}, \quad j = 1, 2, \dots,$$

where S is the stability function of the RK-SSM. □

SOLUTION of (3.):

As explained in [Lecture → § 6.1.126] we have to aim for $|S_\theta(z)| < 1$ for all $z = \lambda \tau < 0$. This is true, if and only if

$$|1 + (1 - \theta)z| < 1 - \theta z \quad \forall z < 0,$$

where we have used that $1 - \theta z > 0$ for all $z < 0$.

In order to resolve the modulus, we have to discuss two cases

$$1. \quad 1 + (1 - \theta) \geq 0 \Leftrightarrow z \geq -\frac{1}{1-\theta}:$$

Leads to $1 + z < 1$, which is satisfied for all $z < 0$. Hence, this case does not give any information about θ .

$$2. \quad 1 + (1 - \theta) < 0 \Leftrightarrow z < -\frac{1}{1-\theta}:$$

We end up with $(2\theta - 1)z < 3$, which is true for all $z < 0$ if and only if $2\theta - 1 \geq 0 \Leftrightarrow \theta \geq \frac{1}{2}$.

Hence, we have found and sufficient and necessary condition for unconditional stability $\theta \in [\frac{1}{2}, 1]$

A not entirely rigorous, but fast, way of finding the suitable range for θ is to examine $S(z)$ for $z \ll -1$:

$$\lim_{z \rightarrow -\infty} |S(z)| = \frac{1 - \theta}{\theta} \stackrel{!}{\leq} 1 \Leftrightarrow \theta \geq \frac{1}{2}.$$

End Problem 3

Problem 4: Finite difference stencil (3 pts)

Problem related to [Lecture → Section 4.1] “Finite differences”.

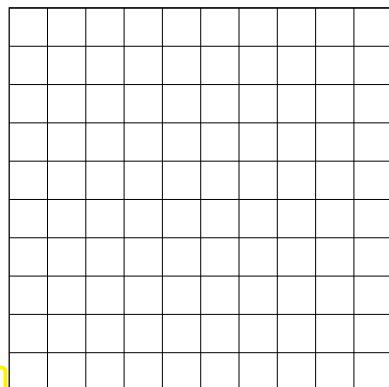


Fig. 2

The unit square domain $\Omega = [0, 1]^2$ is equipped with a structured mesh consisting of equal squares with edge length $h := M^{-1}$, $M \in \mathbb{N}$, see Fig. 2 beside.

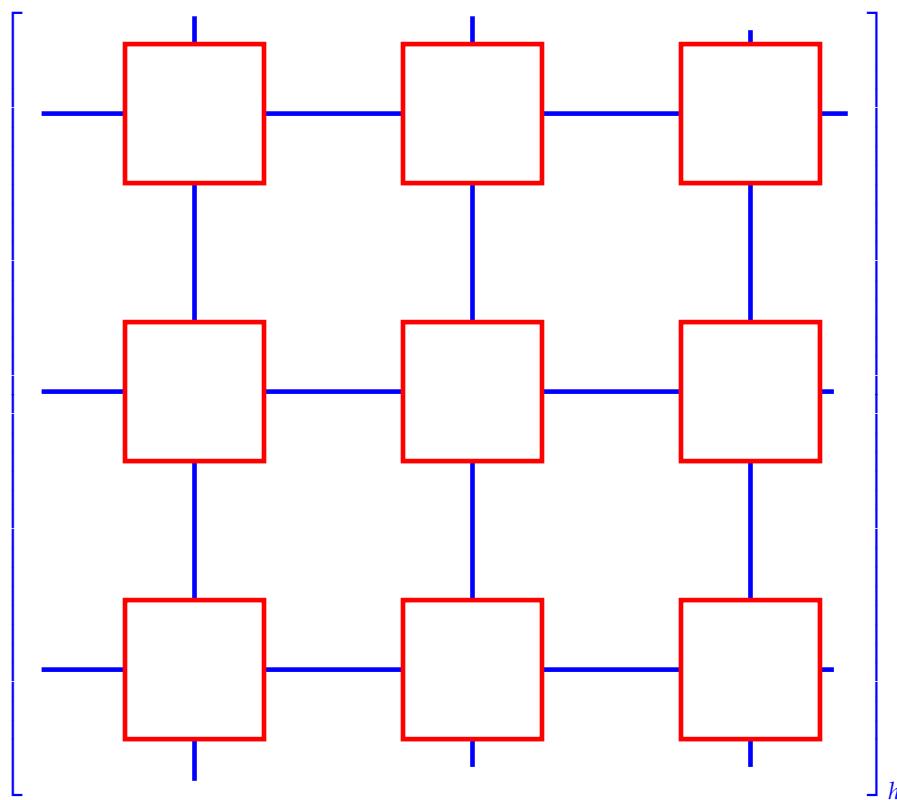
The Galerkin finite element discretization of a scalar second-order elliptic boundary value problem based on the *bilinear* Lagrangian finite element space $S_2^0(\mathcal{M})$ with the customary choice of (global) shape functions yields the element matrix

$$\mathbf{A}_K = \begin{bmatrix} 3 & -2 & 0 & -1 \\ -2 & 3 & -1 & 0 \\ 0 & -1 & 3 & -2 \\ -1 & 0 & -2 & 3 \end{bmatrix} + h \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

where a counterclockwise numbering of the local shape functions, which are associated with vertices, is assumed, see figure

Fig. 3

Write the weights of the resulting finite difference stencil in the boxes below:



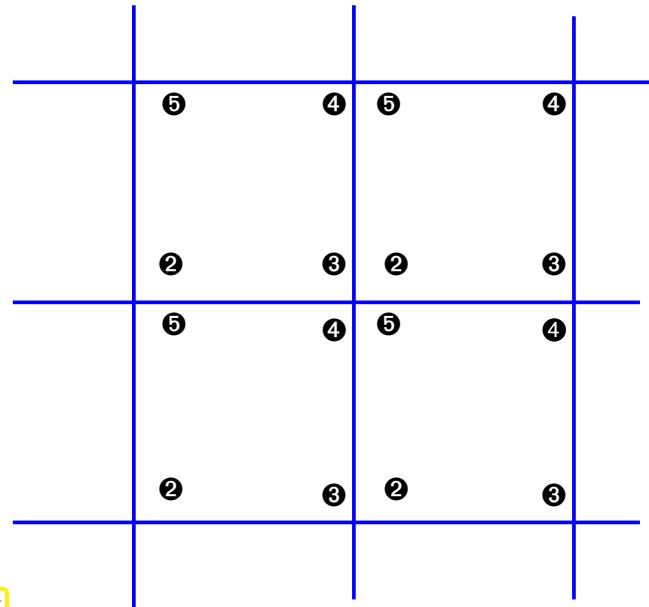
HINT 3 for (4.): The entries of a finite difference stencil agree with the entries of the Galerkin matrix connecting the “central” node and “peripheral” nodes. □

SOLUTION of (4.):

We perform “assembly by pencil and paper” as was demonstrated in [Lecture → Section 4.1.2] for a structured triangular mesh. We obtain entries of the Galerkin matrix by adding up suitable entries of element matrices, see [Lecture → Fig. 105] and [Lecture → Fig. 106].

This procedure leads to the element stencil

$$\begin{bmatrix} 0 & -2 & -h \\ -4 & 12 + 2h & -4 \\ -h & -2 & 0 \end{bmatrix}_h .$$



End Problem 4

Scratch space (will not be evaluated)

Scratch space (will not be evaluated)