
NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

ETH Lecture 401-0663-00L Numerical Methods for PDEs

Endterm Exam
Spring Term 2018

29. May 2018, 15:15, HG F 1

Don’t

panic!

Family Name a a %

First Name

Department

Legi Nr.

Date 29. May 2018

Points:
1 2 3 4 Total

max 3 3 3 3 12

achvd

• This is a closed-book exam.

• Keep only writing material and Legi on the table.

• Keep mobile phones, tablets, smartwatches, etc. turned off in your bag.

• Fill in this cover sheet first.

• Turn the cover sheet only when instructed to do so.

• Then write your name and Legi Nr. on each page.
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Problem 1: Convergence of finite element Galerkin solutions (3 pts)

Problem related to [Lecture → Chapter 5] “Convergence and Accuracy” (of finite element solutions).

This is a multiple-choice task. Wrong ticks incur point penalty.

On the unit square Ω :=]0, 1[2 we consider a sequence of nested triangular meshes

M0 ≺ M1 ≺ · · · ≺ Mj ≺ . . .

generated by global regular refinement of an initial mesh M0.

We write u
(j)
N ∈ S0

[
(M)Mj]2, where j is for mesh Mj, for the finite element Galerkin solution of the

Dirichlet problem

∆u = f in Ω , u = g on ∂Ω , (0.1.1)

where f and g is chosen so that we get as exact solution

u(x) = exp(x2
1 + x2

2) , x ∈ Ω .

Which is the asymptotic behavior of

1. ǫ1(j) :=
∣

∣

∣
u − u

(j)
N

∣

∣

∣

H1(Ω)
in terms of the meshwidth hM → 0 :

ǫ1 = O(h) , O(h2) , O(h3) , ?

2. ǫ2(j) :=
∣

∣

∣
u
(j)
N

∣

∣

∣

2

H1(Ω)
−

∣

∣

∣
u
(j−1)
N

∣

∣

∣

2

H1(Ω)
in terms of the meshwidth hM → 0 :

ǫ2 = O(h) , O(h2) , O(h3) , ?

3. ǫ3(j) :=
∥

∥

∥
u
(j)
N − u

(j−1)
N

∥

∥

∥

L2(Ω)
in terms of N := dimS0

2,0(M) → ∞ :

ǫ3 = O(N− 1
2 ) , O(N−1) , O(N− 3

2 ) , O(N−2) ?

HINT 1 for (1.): Recall that |v|2H1(Ω) =
∫

Ω

‖grad v(x)‖2 dx. y

SOLUTION of (1.):

1. The norm |·|H1(Ω) is the energy norm induced by the variational problem underlying (0.1.1). Thus

we can count on the optimality of the finite element Galerkin solution according to [Lecture →
Thm. 5.1.15].

To estimate the best approximation error we rely on [Lecture → Thm. 5.3.56] and this theorem gives

O(h2) , because the exact solution u is smooth for this problem, such that the rate of convergence

is limited by the polynomial degree of the finite element space.

2. Recall the formula “a2 − b2 = (a + b)(a − b)” for symmetric bilinear forms from [Lecture → § 5.8.9],
which yields

∣

∣

∣
u
(j)
N

∣

∣

∣

2

H1(Ω)
−

∣

∣

∣
u
(j−1)
N

∣

∣

∣

2

H1(Ω)
=

∫

Ω

grad(u
(j)
N + u

(j−1)
N ) · grad(u

(j)
N − u

(j−1)
N )dx .
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Then apply the Cauchy-Schwarz inequality for integrals

∣

∣

∣

∣

∣

∣

∣
u
(j)
N

∣

∣

∣

2

H1(Ω)
−

∣

∣

∣
u
(j−1)
N

∣

∣

∣

2

H1(Ω)

∣

∣

∣

∣

≤
∣

∣

∣
u
(j)
N + u

(j−1)
N

∣

∣

∣

H1(Ω)

∣

∣

∣
u
(j)
N − u

(j−1)
N

∣

∣

∣

H1(Ω)

together with the result of 1, which gives

∣

∣

∣

∣

∣

∣

∣
u
(j)
N

∣

∣

∣

2

H1(Ω)
−

∣

∣

∣
u
(j−1)
N

∣

∣

∣

2

H1(Ω)

∣

∣

∣

∣

= O(h2) for h → 0 .

3. On the unit square the Dirichlet problem for −∆ is 2-regular, cf. [Lecture → Ass. 5.6.23]. Therefore,

we can use the L2(Ω)-estimates of [Lecture → § 5.6.24], which yields

∥

∥

∥
u − u

(j)
N

∥

∥

∥

L2(Ω)
= O(h3) for h → 0 .

Combine this with the triangle inequality and the fact that N ≈ h−2 for uniform refinement in two

dimensions and obtain

∥

∥

∥
u
(j)
N − u

(j−1)
N

∥

∥

∥

L2(Ω)
= O(N− 3

2 ) for h → 0.

End Problem 1
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Problem 2: Output functional (3 pts)

Problem related to [Lecture → Section 5.6] “Duality techniques”.

Fig. 1

Γ0

Γ1

ΓN

ΓN
Ω For a domain Ω ⊂ R

2 we assume a partitioning of

the boundary

∂Ω = ΓN ∪ Γ0 ∪ Γ1 ,

where Γ0 and Γ1 do not touch, see Fig. 1 beside.

If u ∈ H1(Ω) solves

−∆u = f ∈ L2(Ω) in Ω ,

u = 0 on Γ0 ∪ Γ1 , grad u · n = 0 on ΓN ,

then we have
∫

Γ0

grad u · n dS =
∫

Ω

grad u · grad Ψ − f Ψ dx , (0.2.1)

for suitable functions Ψ : Ω → R.

(2.a) (1 pts) What is the largest possible Sobolev space that Ψ can belong to?

Ψ ∈ .

SOLUTION of (2.a):

On one hand, the right-hand side integral in (0.2.1) must be well-defined for any u ∈ H1
0(Ω). This is

guaranteed, if grad Ψ ∈ L
2(Ω) and Ψ ∈ L2(Ω). On the other hand, if grad Ψ 6∈ L2(Ω) we can find

u ∈ H1
0(Ω) such that the integral will blow up.

As a consequence, we need Ψ ∈ H1(Ω) .

N

(2.b) (2 pts) Which boundary conditions does Ψ have to satisfy necessarily to make (0.2.1) hold?

Ψ|
∂Ω

=



















on Γ0 ,

on Γ1 ,

on ΓN .

HINT 1 for (2.b): Green’s formula reads

∫

∂Ω

Ψ grad u · n dS =
∫

Ω

grad u · grad Ψ + ∆u Ψ dx . (0.2.2)
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y

SOLUTION of (2.b):

The arguments are the same as in [Lecture → Section 5.6.2], where we derived and equivalent contin-

uous boundary flux functional [Lecture → Eq. (5.6.15)]. From (0.2.2) we see that (0.2.1) will only hold,

if Ψ|
Γ0

≡ 1 and Ψ|
Γ1

≡ 0. On ΓN the value of Ψ does not matter, because there grad u · n ≡ 0.

Summing up,

Ψ|
∂Ω

=











1 on Γ0 ,

0 on Γ1 ,

any value on ΓN .

N

End Problem 2
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Problem 3: Unconditionally stable timestepping (3 pts)

Problem related to [Lecture → Section 6.1.7] “Timestepping for method-of-lines ODE”.

A class of Runge-Kutta single-step methods (RK-SSM) parameterized by θ ∈ [0, 1] has the stability func-

tion (→ [Lecture → Eq. (6.1.127a)])

Sθ(z) =
1 + (1 − θ)z

1 − θz
, 0 ≤ θ ≤ 1 .

We use these RK-SSM for timestepping in a finite-element method-of-lines framework for the parabolic

evolution equation ∂u
∂t − ∆u = f (x, t) .

For which values of θ is there no stability-induced timestep constraint?

θ ∈ .

HINT 2 for (3.): A Runge-Kutta single-step method (RK-SSM) applied to the scalar ODE ẏ = λy, λ < 0,

with uniform timestep τ > 0 produces a sequence (y(j))∞

j=0 according to

y(j) = S(λτ)y(j−1) , j = 1, 2, . . . ,

where S is the stability function of the RK-SSM. y

SOLUTION of (3.):

As explained in [Lecture → § 6.1.126] we have to aim for|Sθ(z)| < 1 for all z = λτ < 0. This is true, if

and only if

|1 + (1 − θ)z| < 1 − θz ∀z < 0 ,

where we have used that 1 − θz > 0 for all z < 0.

In order to resolve the modulus, we have to discuss two cases

1. 1 + (1 − θ) ≥ 0 ⇔ z ≥ − 1
1−θ

:

Leads to 1 + z < 1, which is satisfied for all z < 0. Hence, this case does not give any information

about θ.

2. 1 + (1 − θ) < 0 ⇔ z < − 1
1−θ

:

We end up with (2θ − 1)z < 3, which is true for all z < 0 if and only if 2θ − 1 ≥ 0 ⇔ θ ≥ 1
2 .

Hence, we have found and sufficient and necessary condition for unconditional stability θ ∈ [ 1
2 , 1]

.

A not enirely rigorous, but fast, way of finding the suitable range for θ is to examine S(z) for z ≪ −1:

lim
z→−∞

|S(z)| =
1 − θ

θ

!
≤ 1 ⇔ θ ≥

1

2
.

End Problem 3
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Problem 4: Finite difference stencil (3 pts)

Problem related to [Lecture → Section 4.1] “Finite differences”.

Fig. 2

The unit square domain Ω =]0, 1[2 is equipped with a struc-

tured mesh consisting of equal squares with edge length

h := M−1, M ∈ N, see Fig. 2 beside.

The Galerkin finite element discretization of a scalar second-

order elliptic boundary value problem based on the bilinear

Lagrangian finite element space S0
2 (M) with the customary

choice of (global) shape functions yields the element matrix

AK =









3 −2 0 −1
−2 3 −1 0
0 −1 3 −2
−1 0 −2 3









+ h









1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0









,

where a counterclockwise numbering of the local shape functions, which

are associated with vertices, is assumed, see figure ✄
Fig. 3

1 2

34

Write the weights of the resulting finite difference stencil in the boxes below:




















































































































































h

HINT 3 for (4.): The entries of a finite difference stencil agree with the entries of the Galerkin matrix

connecting the “central” node and “peripheral” nodes. y

SOLUTION of (4.):
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We perform “assembly by pencil and paper” as was demonstrated in [Lecture → Section 4.1.2] for a

structured triangular mesh. We obtain entries of the Galerkin matrix by adding up suitable entries of

element matrices, see [Lecture → Fig. 105] and [Lecture → Fig. 106].

This procedure leads to the element stencil





0 −2 −h
−4 12 + 2h −4
−h −2 0





h

.

Fig. 4

➋ ➋

➋➋

➌ ➌

➌➌

➍ ➍➍

➍➍ ➎

➎➎

➎

End Problem 4
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Scratch space (will not be evaluated)
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Scratch space (will not be evaluated)
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