
NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

ETH Lecture 401-0663-00L Numerical Methods for PDEs

Final Exam
Spring Term 2018

16. August 2018, 14:00, HG G 1

Don’t

panic!

Family Name a a Grade

First Name

Department

Legi Nr.

Date 16. August 2018

Points:
Task 1 2 3 4 Total

maximum pts. 30 25 30 50 135

achieved pts.

(100% = 90Pt, 20% = 18Pt, pass = 30Pt)

Grade scale: Points Grade

0-2 1

3-5 1.25

6-8 1.5

9-11 1.75

12-13 2.0

14-15 2.25

16-18 2.5

19-20 2.75

21-22 3.0

23-24 3.25

25-27 3.5

28-29 3.75

30-37 4.0

38-44 4.25

45-52 4.5

53-60 4.75

61-68 5.0

69-76 5.25

77-82 5.5

83-89 5.75

≥90 6.0

Final Exam, 16. August 2018 1

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

• Duration: 180 minutes.

• Keep calm!

• Cell phones and other communication devices are not allowed. Make sure that they are turned off

and stowed away in your bag.

• Permitted materials (to be checked during the exam): summary of up to 10 A4 pages in the candi-

dates own handwriting. No printouts and copies are allowed.

• You may cite theorems, lemmas, and equations from the lecture document by specifying their precise

number in the supplied PDF.

• Begin each main problem on a new sheet of paper and write your name and the number of the

exercise in the top right corner.

• Write clearly with a non-erasable pen. Do not use red pen or green pen. No more than one solution

can be handed in per problem. Invalid attempts should be clearly crossed out.

• Include all considerations, auxiliary computations, etc. in your solution.

• Get a general idea of the problems. Pay attention to the number of points awarded for each subtask.

It is roughly correlated with the amount of work the task will require.

• If you have failed to solve a sub-problem, do not give up on the entire problem, but try the next one.

Dependency between sub-problems are stated when needed.

• At the beginning of the exam follow the steps listed below. This is not counted as exam time. You

are not allowed to start the exam until you have a clear indication from an assistant or the

Professor.

1. Fill in the cover page lines and put your ETH ID card (“legi”) on the table.

2. You will get a separate form; fill it in and sign it. An assistant will collect it at the end of the

exam.

3. An assistant will give you blank exam sheets. Please put your name on each of them. Together

with the problem sheet and the cover sheet they have to be handed in when you are finished

with the exam.

4. Please log into the exam computer with your first and last name plus NETHZ login.

5. Go to the folder ’∼/documentation’.

6. Open the main links index-....html in a web browser and verify that they work.

7. Go to the folder ’∼/questions’. There you will find a folder for each problem involving

implementation tasks.

8. Open your preferred editor among the available ones. Qt Creator was tested, but other

IDEs are also available. However, please notice that by using any of them you will take full

responsibility of its setting and you should do so during your own exam time.

9. Only when you are asked so, open the problem sheet. All the problems will be read aloud. You

are only allowed to read through the problems with the Professor. Do not write or type until the

actual start of the exam is announced.

Instructions concerning the C++ implementation

• Please do not modify the CMake files or any file in ’∼/resources’. The time required to restore

them will be part of your own exam time.

Final Exam, 16. August 2018 2

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

• Work and save all result files (codes, plots, etc.) in the directory ’∼/questions’! Only the files

in this folder will be corrected.

• In order to compile your code, if you do not want to rely on an IDE, you can create a build folder in

your home folder. E.g.,

mkdir build

cd build

cmake ../questions

• To compile one problem at a time, run

make problemX

where X is the problem number.

At the end of the examination

• Do not log out and do not turn off the computer!

• Your written results will be collected together with the instruction and problem sheets.

Problems

• If you have problems with the computer, please raise your hand to get support.

Final Exam, 16. August 2018 3

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

Problem 1: First-order System Least-Squares Variational Formulation (30 pts)

This problem studies a non-standard variational formulation of a second-order elliptic boundary

value problem. It is related to [Lecture → Chapter 2] and [Lecture → Chapter 5].

This problem does not involve coding.

Given a bounded computational domain Ω ⊂ R
2 we consider the quadratic minimization problem

(u, j) = argmin
(v,q)∈V

J
(
(v, q)

)
, (0.1.1)

J
(
(v, q)

)
:= 1

2

∥∥∥∥
√

α grad v − 1√
α

q

∥∥∥∥
2

L2(Ω)

+ 1
2‖div q − f‖2

L2(Ω) , (0.1.2)

(see [Lecture → Suppl. 2.5.11] for the definition of div) on the space

V := C1
0(Ω)×

(
C1(Ω)

)2
. (0.1.3)

Here, α ∈ C0(Ω) is a uniformly positive, real-valued function, and f ∈ L2(Ω). Also recall the definition

C1
0(Ω) := {v : Ω → R continuously differentiable, v|∂Ω = 0} . (0.1.4)

(1.a) (5 pts) State a second-order scalar linear elliptic Dirichlet boundary value problem on Ω,

whose solution will provide the u-component of a solution of (0.1.2).

HINT 1 for (1.a): Which equations will u and j satisfy, if J
(
(u, j)

)
= 0? y

SOLUTION of (1.a):

Since J((v, q)) ≥ 0 ∀(v, q) ∈ V we conclude that , u and j satisfying J(v, q) = 0 are necessarily

minimizers of J:

J(u, j) = 0 ⇒ (u, j) ∈ argmin(v,q)∈V J
(
(v, q)

)
. (0.1.5)

It is clear from the definition of J:

J(v, q) = 0 ⇒
{√

α grad v = 1√
α

q

div q = f
in Ω . (0.1.6)

By applying the divergence operator to the first equation of (0.1.6), since v|∂Ω = 0 we have the following

second-order scalar linear elliptic Dirichlet boundary value problem on Ω for the u-component solution

to (0.1.5):
{

div(α grad u) = f on Ω,

u = 0 on ∂Ω.
(0.1.7)

The boundary condition for u is built into the space V, see (0.1.4).

The Dirichlet problem (0.1.7) always has a solution, from which we obtain (u, j) with J(u, q) = 0. This

confirms that the minimal value 0 is attained by J.

N

Final Exam, 16. August 2018 4

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(1.b) (5 pts) State a linear variational problem

(i) with a symmetric bilinear form aF : V × V → R

(ii) for which every solution of the quadratic minimization problem (0.1.1) is also a solution.

SOLUTION of (1.b):

This problem can be tackled in two ways:

(I) We can rely on the calculus of variations approach:

To state the variational formulation of our problem, we write:

lim
t→0

J((v + tw, q + tp))− J((v, q))

t
= 0, ∀(w, p) ∈ V .

We obtain

lim
t→0

J((v + tw, q + tp))− J((v, q))

t
=

=
∫

Ω
α−1q · p + α grad v · grad w − grad w · q − grad v · p + div q div p − div p f dx = 0,

which leads to the following variational equation

aF((v, q), (w, p)) − ℓ((w, p)) = 0 ∀(w, p) ∈ V, (0.1.8)

where

ℓ((w, p)) =
∫

Ω
div p f dx ,

and aF is a symmetric bilinear form defined by

aF((v, q), (w, p)) =
∫

Ω
α−1q · p + α grad v grad w − grad w · q − grad v · p + div q div p dx .

(0.1.9)

(II) We can start from the observation that (0.1.2) is a quadratic minimization problem:

J((v, q)) = 1
2aF((v, q), (v, q)) − ℓ((v, q)) + ‖ f‖2

L2(Ω) . (0.1.10)

where aF and ℓ are as in (0.1.9) and ((I)). The identity (0.1.10) emerges from straightforward

elementary computations.

N

(1.c) (5 pts) [depends on Sub-problem (1.b)]

Show that the bilinear form aF : V × V → R underlying the variational problem from Sub-problem (1.b)

is continuous with respect to the energy norm

‖(v, q)‖2
A := ‖grad v‖2

L2(Ω) + ‖div q‖2
L2(Ω) + ‖q‖2

L2(Ω) , (v, q) ∈ V . (0.1.11)

Final Exam, 16. August 2018 5

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

HINT 1 for (1.c): Use the two versions of the Cauchy-Schwarz inequality

∫

Ω
v w dx ≤ ‖v‖L2(Ω) ‖w‖L2(Ω) ∀v, w ∈ L2(Ω) , (0.1.12)

∣∣∣∣∣
n

∑
i=1

αiβi

∣∣∣∣∣ ≤
(

n

∑
i=1

α2
i

) 1
2

·
(

n

∑
i=1

β2
i

) 1
2

∀αi, βi ∈ R . (0.1.13)

y

SOLUTION of (1.c):

We want to prove the continuity of aF w.r.t. the energy norm ‖ · ‖A, that is

|aF((v, q), (w, p))|2 ≤ C‖(v, q)‖2
A‖(w, p)‖2

A ∀(v, q), (w, p) ∈ V . (0.1.14)

By applying the triangle inequality and the Cauchy-Schwarz inequality to aF in (0.1.9), we obtain

|aF((v, q), (w, p))| ≤ C1

(
‖q‖L2(Ω)‖p‖L2(Ω) + ‖ grad v‖L2(Ω)‖ grad w‖L2(Ω)+

‖q‖L2(Ω)‖ grad w‖L2(Ω) + ‖ grad v‖L2(Ω)‖p‖L2(Ω) + ‖div q‖L2(Ω)‖div p‖L2(Ω)

)
,

where C1 = max{1, ‖α1/2‖L∞(Ω), ‖α−1/2‖L∞(Ω)}. Since, by (0.1.13), (A + B + C + D)2 ≤ 4(A2 + B2 + C2 +
for any real numbers A,B,C, and D, the following inequality holds:

|aF((v, q), (w, p))|2 ≤ C
(
‖q‖2

L2(Ω)‖p‖2
L2(Ω) + ‖ grad v‖2

L2(Ω)‖ grad w‖2
L2(Ω)+

‖q‖2
L2(Ω)‖ grad w‖2

L2(Ω) + ‖ grad v‖2
L2(Ω)‖p‖2

L2(Ω) + ‖div q‖2
L2(Ω)‖div p‖2

L2(Ω)

)

for C = 4C2
1, which proves (0.1.14).

N

Estimates employing the Helmholtz decomposition of vector fields give the following result for the bilinear

form found in Sub-problem (1.b):

Theorem 0.1.15. Ellipticity of FOSLS bilinear form [CLM94]

There is a constant γ > 0 depending only on Ω such that

aF

(
(v, q), (v, q)

)
≥ γ‖(v, q)‖2

A ∀(v, q) ∈ V .

We restrict ourselves to polygonal domains Ω. Next we perform a Galerkin finite element discretization

of the variational problem from Sub-problem (1.b). Based on a triangular mesh M of Ω we use the finite

element space

V0,N := S0
2,0(M)×

(
S0

2 (M)
)2

.

(1.d) (5 pts) [depends on Sub-problem (1.b)]

Argue why V0,N can be used for the discretization of the variational problem from Sub-problem (1.b) or,

equivalently, the minimization problem (0.1.2), though, owing to lack of smoothness, V0,N 6⊂V in general.

Final Exam, 16. August 2018 6

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

SOLUTION of (1.d):

We follow the considerations of [Lecture → Section 2.3.1]: We can use any finite element space for

the Galerkin discretization of the minimization problem (0.1.2)/the FOSLS variational problem (0.1.8) for

which the energy norm (0.1.11) is well defined, that is, finite.

In particular, by virtue of the trivial estimate ‖div q‖L2(Ω) ≤ ‖q‖H1(Ω), this is the case for (v, q) ∈ H1
0(Ω)× (H1

of which the proposed finite element space is a subspace.

Remark. It turns out that the continuity of v and the continuity of normal components of q are the key

properties of valid arguments of aF.

N

(1.e) (10 pts) For testing the Galerkin finite scheme introduced above we consider Ω =]0, 1[2,

α ≡ 1, and choose f in (0.1.2) such that we obtain as exact solution

u(x) = sin(πx1) sin(πx2) , j(x) = π

[
cos(πx1) sin(πx2)
sin(πx2) cos(πx2)

]
.

Denote by (uN , jN) ∈ V0,N the Galerkin finite element solution, given N := dim V0,N.

Describe qualitatively and quantitatively the asympotic convergence of

‖u − uN‖H1(Ω) and ‖div(j − jN)‖L2(Ω)

for N → ∞, that one expects on a sequence of meshes obtained by regular uniform refinement of

some coarse initial mesh.

HINT 1 for (1.e): Base your arguments on Thm. 0.1.15 and the assertion proved in Sub-problem (1.c).

y

SOLUTION of (1.e):

To begin with, we conclude from Thm. 0.1.15 that the bilinear form aF is s.p.d. and, hence, induces a

norm ‖·‖a, which is equivalent to the energy norm ‖·‖A.

Therefore we can apply Cea’s lemma [Lecture → Thm. 5.1.15] and we obtain

‖(u − uN , j − jN)‖2
a = inf

(vN ,qN)∈V0,N

‖(u − vN, j − qN)‖2
a .

We continue based on the result of Sub-problem (1.c):

‖(u − uN , j − jN)‖2
A ≤ C inf

(vN ,qN)∈V0,N

(
‖ grad(u − vN)‖2

L2(Ω) + ‖div(j − qN)‖2
L2(Ω) + ‖j − qN‖2

L2(Ω)

)

≤ C inf
vN∈S0

2 (M)
‖ grad(u − vN)‖2

L2(Ω) + inf
qN∈(S0

2 (M))2
‖j − qN‖2

H1(Ω) .

Then, to describe qualitatively and quantitatively the asympotic convergence of ‖u − uN‖H1(Ω) and

‖div(j − jN)‖L2(Ω) for N → ∞, we rely on [Lecture → Thm. 5.3.56].

Since the exact solutions u and j are smooth for this problem, by [Lecture → Thm. 5.3.56] we can rely

on the following best approximation estimates for quadratic Lagrangian finite elements (p = 2):

inf
vN∈S0

2 (M)
‖u − vN‖H1(Ω) ≤ C

h2
M
2

‖u‖H3(Ω) ,

Final Exam, 16. August 2018 7

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

inf
qN∈S0

2 (M)
‖div(j − qN)‖L2(Ω) ≤ inf

qN∈S0
2 (M)

‖j − qN‖H1(Ω) ≤ C
h2
M
2

‖j‖H3(Ω) ,

with constants depending only on the shape-regularity measure of the meshes.

As N ≈ h−2
M , this means that we have the following asymptotic convergence for N → ∞:

‖u − uN‖H1(Ω) = O(N−1) ,

‖div(j − jN)‖L2(Ω) = O(N−1) .

In each case we expect algebraic convergence with rate (−)1.

N

End Problem 1

Problem 2: Blended parametric representation of curvi-linear triangles (25 pts)

This problem explores a new way for the construction of parametric finite elements. It relates to

[Lecture → Section 3.8]

This problem relies on EIGEN for an implementation in C++.

The figure beside displays a so-called curvi-linear tri-

angle that is a bounded domain K ⊂ R
2 with three

corners a
0, a

1, and a
2, joined by non-intersecting

curves γ01, γ12, and γ20.

These three curves are given by smooth parameteri-

zations:

γ01, γ12, γ20 : [0, 1] → R
2

such that

γ01(0) = a
0 , γ01(1) = a

1 ,

γ12(0) = a
1 , γ12(1) = a

2 ,

γ20(0) = a
2 , γ20(1) = a

0 . Fig. 1

K

γ12

γ20

γ01

a0

a1

a2

Based on this description of the curvi-linear triangle, we introduce the mapping Φ : [0, 1]2 → R
2,

Φ(x̂) := γ01(x̂1) + γ20(1 − x̂2)− γ01(0) + x̂1γ12(x̂2) + x̂2γ12(1 − x̂1)−

x̂1(γ01(1 − x̂2) + γ20(1 − x̂2)− γ01(0))− x̂2(γ01(x̂1) + γ20(x̂1)− γ01(0)) ,
(0.2.1)

for x̂ = [x̂1, x̂2]
⊤ ∈ [0, 1]2.

Final Exam, 16. August 2018 8

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(2.a) (5 pts) Show that Φ from (0.2.1) satisfies

Φ

([
ξ

0

])
= γ01(ξ) , 0 ≤ ξ ≤ 1 . (0.2.2)

SOLUTION of (2.a):

By miraculous cancellation we have

Φ

([
ξ

0

])
= γ01(ξ) + γ02(1)− γ01(0) + ξγ12(0)− ξγ01(1)− ξγ20(1) + ξγ01(0)

= γ01(ξ) ,

Φ

([
0

η

])
= γ01(0) + γ20(1 − η)− γ01(0) + ηγ12(1)− ηγ01(0)− ηγ20(0) + ηγ01(0)

= γ20(1 − η) ,

Φ

([
1 − τ

τ

])
= γ01(1 − τ) + γ20(1 − τ)− γ01(0) + (1 − τ)γ12(τ) + τγ12(τ)−

(1 − τ)γ01(1 − τ)− (1 − τ)γ20(1 − τ)+

(1 − τ)γ01(0)− τγ01(1 − τ)− τγ20(1 − τ) + τγ01(0)

= γ12(τ) .

for 0 ≤ ξ η, τ ≤ 1. The first identity is (0.2.2) and is all that is required to solve this sub-problem.

N

(2.b) (3 pts) Give a geometric interpretation of (0.2.2).

SOLUTION of (2.b):

The mapping ζ 7→
[

ζ
0

]
, 0 ≤ ζ ≤ 1, parameterizes the line segment

[[
0
0

]
,
[

1
0

]]
. Hence, the mapping

Φ maps this line segment to the curve given by the parameterization γ01.

N

(2.c) (3 pts) We write K̂ for the (reference) triangle with vertices

[
0
0

]
,

[
1
0

]
, and

[
0
1

]
.

State a formula analogous to (0.2.2) that expresses the fact that Φ from (0.2.1) maps the edge of K̂

connecting

[
1
0

]
and

[
0
1

]
to the edge of K connecting a1 and a2.

SOLUTION of (2.c):

This formula has already been given in the solution of Sub-problem (2.a):

Φ

([
1 − τ

τ

])
= γ12(τ) , 0 ≤ τ ≤ 1 .

N

Final Exam, 16. August 2018 9

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(2.d) (3 pts) We write γ̇∗ for the derivative of γ∗ with respect to its argument, given ∗ ∈ {01, 12, 20}.

Using this notation give a formula for the Jacobian DΦ : [0, 1]2 → R
2,2 of Φ.

HINT 1 for (2.d): The computations boil down to applying the product rule. Recall that the columns

of the Jacobian are partial derivatives. y

SOLUTION of (2.d):

The Jacobian is defined as

DΦ(x̂) =
[

∂Φ

∂x̂1
(x̂), ∂Φ

∂x̂2
(x̂)
]
∈ R

2,2 .

Thus the colunns of the Jacobian are
[
DΦ(x̂)

]
:,1

= γ̇01 x̂1 + γ12(x̂2)− x̂2γ̇12(1 − x̂1)− γ01(1 − x̂2)− γ20(1 − x̂2)

+ γ01(0)− x̂2γ̇01(x̂1)− x̂2γ̇20(x̂1) ,[
DΦ(x̂)

]
:,2

= −γ̇20(1 − x̂2) + x̂1γ̇12(x̂2) + γ12(1 − x̂1) + x̂1γ̇01(1 − x̂2) + x̂1γ̇20(1 − x̂2)

− γ01(x̂1)− γ20(x̂1) + γ01(0) .

N

In some EIGEN-based C++ code curves [0, 1] 7→ R
2 are represented by child classes of the following

virtual base class:

c lass Curve {

p u b l ic:

v i r t u a l Eigen::Vector2d opera tor()(double parameter) const = 0;

v i r t u a l Eigen::Vector2d derivative(double parameter) const = 0;

};

The operator() returns a point on the curve when given a parameter ∈ [0, 1], whereas the method

derivative() returns the derivative vector.

(2.e) (3 pts) [depends on Sub-problem (2.d)]

Implement a C++ function

Eigen::MatrixXd JacobianPhi(const Eigen::Vector2d& point,

const Curve& gamma01, const Curve& gamma12, const Curve& gamma20)

that provides the Jacobian of Φ from (0.2.1) when one supplies the coordinates of a point ∈ [0, 1]2,

given γ01, γ12, and γ20.

Template. A template for the function JacobianPhi is given in the file Problem2/BlendedParameterization

SOLUTION of (2.e):

C++ code 0.2.3: Sub-problem (2.e): Implementation of JacobianPhi

2 ma t r i x _ t JacobianPhi (const coord_t& po in t ,

3 const Curve& gamma01 , const Curve& gamma12 ,

Final Exam, 16. August 2018 10

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

const Curve& gamma20)

4 {

5 ma t r i x _ t J (2 ,2) ; // Variable for returning Jacobian

6 // The formulas for the columns of the jacobian have been derived
in Sub-problem (2.d)

7 J . col (0) = gamma01 . d e r i v a t i v e (p o in t [0]) + gamma12(p o in t [1]) −
8 p o in t [1]∗gamma12 . d e r i v a t i v e (1.− p o in t [0]) −
9 (gamma01(1.− p o in t [1]) + gamma20(1.− p o in t [1]) −

gamma01 (0 .)) −
10 p o in t [1] ∗ (gamma01 . d e r i v a t i v e (p o in t [0]) +

gamma20 . d e r i v a t i v e (p o in t [0])) ;

11 J . col (1) = −gamma20 . d e r i v a t i v e (1.− p o in t [1]) +

12 p o in t [0]∗gamma12 . d e r i v a t i v e (p o in t [1]) +

gamma12(1.− p o in t [0]) +

13 p o in t [0] ∗ (gamma01 . d e r i v a t i v e (1.− p o in t [1]) +

gamma20 . d e r i v a t i v e (1.− p o in t [1])) −
14 (gamma01(p o in t [0]) + gamma20(p o in t [0]) − gamma01 (0 .)) ;

15 return J ;

16 }

N

(2.f) (8 pts) The observations made in Sub-problem (2.b) and Sub-problem (2.c) hint that Φ(K̂) = K,

which we are going to assume.

Implement a C++ function

Eigen::MatrixXd evalBlendLocMat(const Curve& gamma01,

const Curve& gamma12,

const Curve& gamma20);

that approximately computes the local element matrix for the bilinear form

(u, v) 7→
∫

Ω
grad u · grad v dx

for the Laplacian −∆ on K using parametric linear Lagrangian finite elements based on the parametriza-

tion of K through Φ from (0.2.1). Function arguments gamma01, gamma12, and gamma20 of type

const Curve& specify the curves γ01, γ12, and γ20, respectively.

Consider the following quadrature rule to approximately evaluate any integrals over triangles: for a

generic triangle T with vertices x, y, z ∈ R
2, use

∫

T
f dx ≈ |T|

3

(
f
(

1
2(x + y)

)
+ f

(
1
2(y + z)

)
+ f

(
1
2(z + x)

))
.

Template. A template for the function evalBlendLocMat is given in the file Problem2/BlendedParameterizatio

HINT 1 for (2.f): Matrices of EIGEN are supplied with methods determinant(), inverse(),

and transpose(). y

SOLUTION of (2.f):

Final Exam, 16. August 2018 11

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

C++ code 0.2.4: Sub-problem (2.f): Implementation of evalBlendLocMat

2 ma t r i x _ t evalBlendLocMat (const Curve& gamma01 ,

3 const Curve& gamma12 ,

4 const Curve& gamma20)

5 {

6 // Variable for returning 3 × 3 element matrix

7 ma t r i x _ t l c lMa t (3 ,3) ; l c lMa t . setZero () ;

8 ma t r i x _ t x i (2 ,3) ; // coordinates of midpoints of curves

9 x i . col (0) << 0.5 , 0 . ; x i . col (1) = 0 .5 , 0 .5 ; x i . col (2) = 0 . , 0 .5 ;

10 // (constant) gradients of barycentric coordinate function on the
reference element,

11 // which are the preimages of the local shape functions under
pullback

12 ma t r i x _ t gradEval (3 ,2) ;

13 gradEval << −1., −1., // grad λ̂1

14 1 . , 0 . , // grad λ̂2

15 0 . , 1 . ; // grad λ̂3

16 // Generate element matrix by adding up rank-1 matrices formed
from gradients

17 // of local shape functions at midpoints of edges.

18 for (i n t l =0; l < x i . cols () ; ++ l) {

19 coord_t x i _ l = x i . col (l) ;

20 // Call auxiliary function implemented in Sub-problem (2.e)

21 ma t r i x _ t J i _ l = JacobianPhi (x i _ l , gamma01 , gamma12 , gamma20) ;

22 numeric_t d e t J i _ l = std : : abs (J i _ l . determinant ()) ;

23 // Transformation matrix for gradients, see [Lecture →
Lemma 3.8.26]

24 ma t r i x _ t invJT_ l = J i _ l . inverse () . transpose () ;

25 // Transformed gradient

26 ma t r i x _ t grad_b_l = gradEval ∗ i nvJT_ l ;

27 // Rank-1 update of element matrix

28 l c lMa t += d e t J i _ l ∗ grad_b_l ∗ grad_b_l . transpose () ;

29 }

30 // Don’t forget the quadrature weight 1
6: area

31 // of the reference triangle = 1
2!

32 return l c lMa t / 6 . ;

33 }

N

End Problem 2

Problem 3: A Special Neumann problem (30 pts)

This problem deals with a scalar second-order elliptic boundary with non-standard boundary condi-

tions. It draws on techniques from [Lecture → Chapter 2], [Lecture → Chapter 3], and [Lecture →
Chapter 5].

Coding for this problem relies on EIGEN and BETL.

Final Exam, 16. August 2018 12

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

For a connected bounded Lipschitz polygon Ω ⊂ R
2 define

H1
∂(Ω) := {v ∈ H1(Ω) :

∫

∂Ω

v dS = 0} . (0.3.1)

On this Sobolev space we consider the variational problem

u ∈ H1
∂(Ω):

∫

Ω

grad u · grad v dx =
∫

Ω

f v dx ∀v ∈ H1
∂(Ω) , (0.3.2)

with source function f ∈ L2(Ω).

(3.a) (3 pts) Discuss the uniqueness of solutions of (0.3.2).

SOLUTION of (3.a):

We follow the considerations from [Lecture → § 2.2.54].

For uniqueness, we have to prove that the bilinear form a stemming from the variational formulation of

the problem is positive definite, that is

a(v, v) > 0 ∀v ∈ H1
∂(Ω) \ {v = 0 in Ω}. (0.3.3)

Using the variational formulation, we write

a(u, v) =
∫

Ω
grad u · grad v dx ,

ℓ(v) =
∫

Ω
f v dx ,

where a is a bilinear form and ℓ is linear. To prove (0.3.3), we write

a(v, v) =
∫

Ω
‖grad v‖2 dx = 0 if and only if grad v = 0 .

Then, v = C on Ω, where C is a constant. Since v ∈ H1
∂(Ω), then

∫
∂Ω

C dS = 0, that is C = 0, and

a must be positive definite.

N

(3.b) (5 pts) State the second-order elliptic boundary value problem for which (0.3.2) is the weak

formulation.

SOLUTION of (3.b):

The approach is similar to that elaborated in [Lecture → Ex. 2.5.23].

We first test with functions v ∈ H1
0(Ω) and tease out the PDE by integration by parts: −∆u = f .

Then test the PDE with v ∈ H1
∂(Ω) and find after integration by parts that

∫

∂Ω

grad u · n v dS = 0 ∀v ∈ H1
∂(Ω) . (0.3.4)

Final Exam, 16. August 2018 13

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

Since the average of v over ∂Ω vanishes, a constant value for grad u · n satisfies this condition. If

grad u · n is not constant, then (0.3.4) cannot hold. Thus we have found the boundary condition

grad u · n ≡ const on ∂Ω .

N

Since there is no simple finite element subspace of H1
∂(Ω), the following augmented variational formu-

lation is often used:

u ∈ H1(Ω)
η ∈ R

:

∫
Ω

grad u · grad v dx +
∫

∂Ω

η v dx =
∫
Ω

f v dx ∀v ∈ H1(Ω) ,
∫

∂Ω

µ u dx = 0 ∀µ ∈ R .
(0.3.5)

(3.c) (3 pts) Show that the solution u of the variational problem (0.3.5) solves the variational problem

(0.3.2).

SOLUTION of (3.c):

Since
∫

∂Ω
µu dS = 0 ∀µ ∈ R, the second equation implies u ∈ H1

∂(Ω). For v ∈ H1
∂(Ω) ⊂ H1(Ω),∫

∂Ω

η v dx = 0 and therefore the solution u of the variational problem (0.3.5) solves the variational prob-

lem (0.3.2).

N

(3.d) (5 pts) [depends on Sub-problem (3.b)]

How is the value for the scalar solution component η ∈ R in (0.3.5) related to the u-component of the

solution of (0.3.5)?

SOLUTION of (3.d):

We follow the same procedure of Sub-problem (3.b) for (0.3.5). Using integration by parts, the first

equation of (0.3.2) becomes

η
∫

∂Ω
v dS = −

∫

∂Ω

∂u

∂n
v dS .

Since ∂u
∂n

= const on Ω, as we have seen in Sub-problem (3.b). we obtain η = −const.

N

We equip Ω with a triangular mesh and consider the finite element Galerkin discretization of (0.3.5) based

on the piecewise linear Lagrangian finite element space S0
1 (M) and its nodal ordered basis {bℓN}N

ℓ=1,

N := dimS0
1 (M), of “tent functions”. This converts (0.3.5) into a linear system of equations of the

following block form
[

A c

c⊤ 0

][
~µ

η

]
=

[
~ϕ

0

]
, (0.3.6)

where~µ is the vector of expansion coefficients of the Galerkin solution uN ∈ H1(Ω) w.r.t. the nodal basis.

Final Exam, 16. August 2018 14

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(3.e) (3 pts) Give formulas for the entries of the matrix A ∈ R
N,N and of the column vectors c ∈ R

N

and ~ϕ ∈ R
N.

SOLUTION of (3.e):

Entries of matrices and vectors arise from plugging basis functions into the (bi-)linear forms of (0.3.5):

Ai,j =
∫

Ω
grad bN

i grad bN
j dx ,

ci =
∫

∂Ω
bN

i dS ,

~ϕi =
∫

Ω
f bN

i dx ,

i, j = 1, . . . , N.

N

We have at our disposal a BETL-based C++ function

template <typename FESPACE, typename FUNC_ALPHA, typename FUNC_GAMMA,

typename FUNC_BETA>

std::vector <Eigen::Triplet<double> >

compGalerkinMatrix(const FESPACE& fe_spc,

FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma,

FUNC_BETA&& beta);

that, given a mesh M, computes the S0
1 (M)-based finite element Galerkin matrix in triplet format for the

variational boundary value problem

u ∈ H1(Ω):
∫

Ω
α(x) grad u(x) · grad v(x) + γ(x) u(x) v(x) dx +

∫

∂Ω
β(x) u(x) v(x)dS(x) =

∫

Ω
f (x) v(x)dx ∀v ∈ H1(Ω) , (0.3.7)

where α, γ : Ω → R, β : ∂Ω → R are bounded, uniformly positive coefficient functions, and f ∈ L2(Ω).
The argument fe_spc passes the FE space defined on M, while alpha, gamma, and beta are func-

tors for the scalar coefficients α, γ, and β.

Code. The function compGalerkinMatrix is implemented in the file

Problem3/SolAvgBoundary.cpp,

while the auxiliary classes AssemblerLocalMat and AssemblerLocalVec can be found in the file

utils/AssemblerLocal.hpp.

(3.f) (6 pts) [depends on Sub-problem (3.f)]

Based on the function compGalerkinMatrix, write a BETL-based C++ function ,

template <typename FESPACE>

Eigen::SparseMatrix<double> augmentMatrix(const FESPACE& fe_spc,

const Eigen::VectorXd& c)

that augments the appropriate sparse coefficient matrix assembled by compGalerkinMatrix in

triplet format to obtain the full Galerkin matrix for the linear system of equations (0.3.6). Argument

Final Exam, 16. August 2018 15

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

c passes vector c from (0.3.6), while argument fe_test passes an object describing the piecewise

linear Lagrangian finite element space.

Template. A template for the function augmentMatrix is given in the file Problem3/SolAvgBoundary.cpp

HINT 1 for (3.f): Carry out matrix manipulations in triplet format and build the sparse matrix a final

step. y

SOLUTION of (3.f):

C++ code 0.3.8: Sub-problem (3.f): Implementation of augmentMatrix

2 template <typename FESPACE_TEST_T>

3 sparseMatr ix_ t augmentMatrix (const FESPACE_TEST_T& fe_ tes t , const

v e c to r _ t& c)

4 {

5 const auto alpha = [] (const coord_t& x) { return 1 . ; } ;

6 const auto gamma = [] (const coord_t& x) { return 0 . ; } ;

7 const auto beta = [] (const coord_t& x) { return 0 . ; } ;

8

9 t r i p l e t M a t r i x _ t A = compGalerkinMatr ix (fe_ tes t , alpha , gamma,

beta) ;

10

11 size_t numDofs = c . size () ;

12 for (i n t i =0; i <numDofs ; ++ i) {

13

14 A. push_back (t r i p l e t _ t (i , numDofs , c (i))) ;

15 A. push_back (t r i p l e t _ t (numDofs , i , c (i))) ;

16 }

17

18 sparseMatr ix_ t Ac (numDofs+1 ,numDofs+1) ;

19 Ac . setFromTriplets (A . begin () , A . end ()) ;

20 return Ac ;

21 }

N

(3.g) (5 pts) [depends on Sub-problem (3.f)]

Based on the function compGalerkinMatrix, write another C++ function

template <typename FESPACE>

Eigen::VectorXd computeCVector(const FESPACE& fe_test)

that returns the column vector c ∈ R
N as defined in (0.3.6).

For your implementation you should use only only the function compGalerkinMatrix and tools

offered by EIGEN.

Template. A template for the function computeCVector is given in the file Problem3/SolAvgBoundary.cpp

HINT 1 for (3.g): You may use the method setFromTriplets of Eigen::SparseMatrix<double>

to create a matrix from the data returned by compGalerkinMatrix. y

Final Exam, 16. August 2018 16

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

SOLUTION of (3.g):

Let B be the matrix returned by compGalerkinMatrix for α ≡ 0, γ ≡ 0, and β ≡ 1. Then we have

c = B1 , 1 =
[
1 1 · · · 1

]⊤ ∈ R
N .

C++ code 0.3.9: Sub-problem (3.f): Implementation of computeCVector

2 template <typename FESPACE_TEST_T>

3 v e c to r _ t computeCVector (const FESPACE_TEST_T& f e _ t e s t)

4 {

5 const auto alpha = [] (const coord_t& x) { return 0 . ; } ;

6 const auto gamma = [] (const coord_t& x) { return 0 . ; } ;

7 const auto beta = [] (const coord_t& x) { return 1 . ; } ;

8

9 t r i p l e t M a t r i x _ t B = compGalerkinMatr ix (fe_ tes t , alpha , gamma,

beta) ;

10 sparseMatr ix_ t B_ (f e _ t e s t . numDofs () , f e _ t e s t . numDofs ()) ;

11 B_ . setFromTriplets (B . begin () , B . end ()) ;

12

13 return B_ ∗ v e c to r _ t : : Ones (f e _ t e s t . numDofs ()) ;

14 }

N

End Problem 3

Problem 4: Implicit-Explicit Runge-Kutta Single-Step Methods (50 pts)

This problem concerns a special class of timestepping schemes for parabolic evolution problems.

This problem relies on EIGEN and BETL.

The article [ARS97] introduces s-stage (s ∈ N) so-called implicit-explicit (IMEX) partitioned Runge-

Kutta single-step methods (RK-SSMs). Their definition relies on two elementary RK-SSMs given through

their respective Butcher schemes, see [Lecture → § 6.1.79]:

(A)
c A

bT =̂

c1 a11 0 0
c2 a21 a22 0
...

...
. . .

...
...

...
. . .

...

cs as1 . . . ass

b1 b2 bs

,
c, b ∈ R

s,

A ∈ R
s,s ,

(0.4.1)

Final Exam, 16. August 2018 17

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(B)
ĉ Â

b̂T =̂

0 0 0
ĉ2 â21 0 0
ĉ3 â31 â32 0 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

ĉs+1 âs+1,1 âs+1,s 0

b̂1 b̂2 b̂s+1

,
ĉ, b̂ ∈ R

s+1,

Â ∈ R
s+1,s+1 .

(0.4.2)

The IMEX RK-SSM is applied for the numerical integration of an autonomous ordinary differential equation

of the form

u̇ = f(u) + g(u) , f, g : R
N → R

N , N ∈ N . (0.4.3)

This results in a discrete evolution given by

u1 := Ψ
t,t+τu0 :





k̂1 := f(u0)

for i = 1, . . . , s do



ui := u0 + τ
i

∑
j=1

ai,jkj + τ
i

∑
j=1

âi+1,jk̂j ,

ki := g(ui) ,

k̂i+1 := f(ui) ,

u1 := u0 + τ
s

∑
j=1

bjkj + τ
s+1

∑
j=1

b̂jk̂j .

(0.4.4)

(4.a) (5 pts) Algorithm (0.4.4) entails solving potentially non-linear equations to determine the in-

crements ki, i = 1, . . . , s, which depend upon ki = g(ui). For the scalar case N = 1 formulate the

Newton iteration that can be employed to approximately find ui, i = 1, . . . , s. The function g can be

assumed to be continuously differentiable.

SOLUTION of (4.a):

The scalar Newton iteration for solving f̃ (u) = 0 for a function f̃ (u) ∈ C1(R) is

u(n+1) = u(n) − f̃ (u(n))

f̃ ′(u(n))
provided that the derivative f̃ ′(u(n)) 6= 0 .

In Eq. (0.4.4), we can define f̃ (ui) as

f̃ (ui) := u0 + τ
i−1

∑
j=1

ai,jkj + τ
i

∑
j=1

âi+1,jk̂j

︸ ︷︷ ︸
independent of ui

+τai,ig(ui)− ui .

Hence, the Newton iteration is

u
(n+1)
i = u

(n)
i − 1

τai,ig′(u
(n)
i)− 1

(
u0 + τ

i−1

∑
j=1

ai,jkj + τ
i

∑
j=1

âi+1,jk̂j + τai,ig(u
(n)
i)− u

(n)
i

)
.

N

Final Exam, 16. August 2018 18

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(4.b) (5 pts) State the definition of the IMEX RK-SSM from (0.4.4) in the “explicit form”

u1 := Ψ
t,t+τu0 :





k̂1 := f(u0)

for i = 1, . . . , s do



ui := ,

ki := g(ui) ,

k̂i+1 := f(ui) ,

u1 := u0 + τ
s

∑
j=1

bjkj + τ
s+1

∑
j=1

b̂jk̂j ,

(0.4.5)

when it is applied to the ODE

u̇ = f(u) + g(u) with g(u) := −Au , A ∈ R
N,N s.p.d. , (0.4.6)

and a generic continuous function f : R
N → R

N.

You need only write down the contents of the black box, but neither ki nor ui must occur in your

expression.

SOLUTION of (4.b):

Rewrite ui in (0.4.4) as

ui := u0 + τ
i−1

∑
j=1

ai,jkj + τai,ig(ui) + τ
i

∑
j=1

âi+1,jk̂j .

Then, by replacing g(u) := −Au with A given and s.p.d., you get

ui = (I + τai,iA)−1

(
u0 + τ

i−1

∑
j=1

ai,jkj + τ
i

∑
j=1

âi+1,jk̂j

)
.

Note that for s.p.d. A also the matrix I + τai,iA is s.p.d. and, hence, invertible.

N

Now we focus on the concrete 2-stage IMEX RK-SSM defined by

(A)
c A

bT =̂
γ γ 0

1 − γ 1 − 2γ γ
1
2

1
2

, γ =
3 +

√
3

6
, (0.4.7)

(B)
ĉ Â

b̂T =̂

0 0 0 0
γ γ 0 0

1 − γ γ − 1 2(1 − γ) 0

0 1
2

1
2

. (0.4.8)

(4.c) (10 pts) [depends on Sub-problem (4.b)]

Perform an empirical study of the order of the IMEX RK-SSM given by (0.4.7) and (0.4.8) by solving the

scalar initial value problem (IVP)

ẏ = f (y) + g(y) , f (y) := −y2 , g(y) = y , y(0) = 1
4 , (0.4.9)

Final Exam, 16. August 2018 19

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

with exact solution

y(t) =
exp(t)

3 + exp(t)
,

on a sequence of equidistant meshes of [0, 1] with meshwidths τ := 2−3, 2−4, . . . , 2−10 and monitoring

the maximal error in the meshpoints:

err(τ) := max
j=1,...,M

|y(jτ)− y(j)| , τ := M−1 .

To that end write a C++ function

double IMEXError(i n t M)

that computes err(M) for the IVP given in (0.4.9). Then tabulate the error values for M = 23, 24, . . . , 210

and describe the convergence qualitatively and quantitatively.

Template. A template for the function IMEXError is given in the file Problem4/IMEX.hpp.

SOLUTION of (4.c):

C++ code 0.4.10: Sub-problem (4.c): Implementation of IMEXError

2 double IMEXError (i n t M)

3 {

4 double tau = 1 . /M;

5 double y = 0 .25 ;

6 double t = 0 . ;

7 double e r r = 0 . ;

8

9 double gamma = 0.5 + std : : s q r t (3 .) / 6 . ;

10

11 for (i n t i =0; i <M; ++ i) {

12

13 double kh_1 = −y∗y ;

14 double y_1 = (y + tau∗gamma∗kh_1) / (1 . − tau∗gamma) ;

15 double k_1 = y_1 ;

16 double kh_2 = −y_1∗y_1 ;

17 double y_2 = (y + tau ∗(1−2.∗gamma)∗k_1 +

tau ∗ (gamma−1.)∗kh_1 + tau ∗2.∗(1.−gamma)∗kh_2) / (1 . −
tau∗gamma) ;

18 double k_2 = y_2 ;

19 double kh_3 = −y_2∗y_2 ;

20 y += tau ∗0.5∗k_1 + tau ∗0.5∗k_2 + tau ∗0.5∗kh_2 + tau ∗0.5∗kh_3 ;

21

22 t += tau ;

23 double y_ex = std : : exp (t) / (3 . + std : : exp (t)) ;

24 double e r r _ t = std : : abs (y − y_ex) ;

25 i f (e r r _ t > e r r) {

26 e r r = e r r _ t ;

27 }

28 }

Final Exam, 16. August 2018 20

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

29

30 return e r r ;

31 }

Fig. 2

10 0 10 1 10 2 10 3 10 4

M

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

e
rr

o
r

convergence rate: 3.038751

Table of error:
M error

23 8.38411e-05

24 9.30965e-06

25 1.10098e-06

26 1.33980e-07

27 1.65278e-08

28 2.05249e-09

29 2.55726e-10

210 3.19141e-11

✁ Log-log plot of err vs. M. The error curve is al-

most a line and from its slope we can read off a

convergence rate of ∼ 3.

N

For a bounded connected polygonal Ω ⊂ R
2 we consider the following non-linear 2nd-order parabolic

evolution problem in weak form: seek u : [0, T] → H1(Ω) such that

∫

Ω

∂u

∂t
v + grad u · grad v + sinh(u) v dx +

∫

∂Ω
u v dS =

∫

∂Ω
v dS ∀v ∈ H1(Ω) ,

u(0) = u0 ∈ H1(Ω) ,

(0.4.11)

where u0 is given.

(4.d) (5 pts) State the initial-boundary value problem in strong (PDE) form for which (0.4.11) is the

associated spatial variational formulation.

SOLUTION of (4.d):

It boils down to “undoing” integration by parts using Green’s formula. The linear terms are the standard

terms occurring in the variational formulation of a scalar linear parabolic boundary value problem with

spatial radiation/impedance boundary conditions, see [Lecture → Eq. (2.9.8)]. The non-linear term is

of order zero and is not affected by integration by parts.

∂u

∂t
− ∆u + sinh(u) = 0 in Ω ,

grad u · n + u = 1 on ∂Ω ,

u(0) = u0 .

N

In the spirit of the method of lines (MOL) we perform the spatial semidiscretization of (0.4.11) by means

of a Galerkin finite element discretization based on the Lagrange finite element space S0
1 (M), M a

Final Exam, 16. August 2018 21

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

triangular mesh of Ω, and end up with an initial value problem for an ordinary differential equation of the

form

M~̇µ + A~µ + r(~µ) = ~ϕ ,

~µ(0) = ~µ0 ,
(0.4.12)

with suitable matrices M, A ∈ R
N,N, a non-linear function r : R

N → R
N, and~ϕ ∈ R

N, N := dimS0
1 (M).

Here t → ~µ(t) is the time-dependent vector of basis expansion coefficients of the semidiscrete solution

t → uN(t) ∈ S0
1 (M). The use of standard nodal basis functions

{
bℓN
}N

ℓ=1
is assumed.

(4.e) (3 pts) Give formulas for the entries of the matrices M and A and of the column vector~ϕ ∈ R
N

in terms of suitable integrals of expressions involving the basis functions bℓN .

SOLUTION of (4.e):

From [Lecture → Section 6.1.4] it is immediate:

(M)ij =
∫

Ω
bi

N b
j
N dx ,

(A)ij =
∫

Ω
grad bi

N · grad b
j
N dx +

∫

∂Ω
bi

N b
j
N dS ,

(~ϕ)ij =
∫

∂Ω
bi

N dS ,

with i, j = 1, . . . , N.

N

We have at our disposal a BETL-based C++ function

template <typename FESPACE_TEST_T, typename FUNC_ALPHA, typename

FUNC_GAMMA, typename FUNC_BETA>

Eigen::SparseMatrix<double>

compGalerkinMatrix(const FESPACE_TEST_T& fe_test,

FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma, FUNC_BETA&& beta)

that, given a mesh M, computes the S0
1 (M)-based finite element Galerkin matrix for the variational

boundary value problem

u ∈ H1(Ω):
∫

Ω
α(x) grad u(x) · grad v(x) + γ(x) u(x) v(x) dx +

∫

∂Ω
β(x) u(x) v(x)dS(x) =

∫

Ω
f (x) v(x)dx ∀v ∈ H1(Ω) , (0.4.13)

where α, γ : Ω → R, β : ∂Ω → R are bounded, uniformly positive coefficient functions, and f ∈ L2(Ω).
The argument fe_test passes the FE space defined on M, while alpha, gamma, and beta are

functors for coefficient functions α, γ, and β.

Code. The function compGalerkinMatrix is implemented in the file

Problem4/IMEXRKSSM.cpp,

while the auxiliary classes AssemblerLocalMat and AssemblerLocalVec can be found in the file

utils/AssemblerLocal.hpp.

Final Exam, 16. August 2018 22

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

(4.f) (8 pts) Write a BETL-based C++ function

template <typename FESPACE_TEST_T>

Eigen::VectorXd compNonlinearTerm(const FESPACE_TEST_T& fe_test,

const Eigen::VectorXd& u)

that globally assembles r(~µ), where r is the non-linear mapping (0.4.12). The vector of coefficients~µ is

passed as argument u.

To that end you have to complete the eval method of the C++ struct AssemblerLocalFunc,

template <typename BUILDER_DATA, typename ELEMENT>

i n l i n e s t a t i c result_t eval(const BUILDER_DATA& data, const

ELEMENT& el);

which is called by compNonlinearTerm and locally assembles r(~µ). For the evaluation of the inte-

gral involved in the definition of r, rely on the composite trapezoidal rule over the mesh M, see [Lecture

→ Eq. (3.4.51)]. The member vector u_loc of the data argument stores the coefficients of the local

FE basis functions.

Templates. Templates for the function compNonlinearTerm and the auxiliary class Assembler-

LocalFunc are given in the file Problem4/AssemblerFunc.hpp.

SOLUTION of (4.f):

C++ code 0.4.14: Sub-problem (4.f): Implementation of AssemblerLocalFunc

2 template <typename BUILDER_DATA, typename ELEMENT>

3 i n l in e s t a t i c r e s u l t _ t eval (const BUILDER_DATA& data , const

ELEMENT& e l)

4 {

5 ETH_ASSERT_MSG(e l . re fElType () ==

eth : : base : : RefElType : : TRIA ,

6 " T h i s assemb le r o n l y works w i t h 2D

t r i a n g l e s . ") ;

7

8 r e s u l t _ t r e s u l t ; r e s u l t . setZero () ;

9

10 const auto& geom = e l . geometry () ;

11 double elem_area = geom . volume () ;

12

13 for (i n t l =0; l <3; ++ l) {

14 r e s u l t (l) = elem_area / 3 . ∗ std : : s inh (data . u_loc (l)) ;

15 }

16

17 return std : : move(r e s u l t) ;

18 }

C++ code 0.4.15: Sub-problem (4.f): Implementation of compNonlinearTerm

2 template <typename FESPACE_TEST_T>

3 Eigen : : VectorXd compNonlinearTerm (const FESPACE_TEST_T& fe_ tes t ,

Final Exam, 16. August 2018 23

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

4 const Eigen : : VectorXd& u)

5 {

6 st ruct data_ t {

7 Eigen : : VectorXd u ;

8 Eigen : : Vector3d u_loc ;

9 data_ t (const Eigen : : VectorXd& u) :

10 u (u) { }

11 } data (u) ;

12

13 Eigen : : VectorXd vector (f e _ t e s t . numDofs ()) ; vector . setZero () ;

14 AssemblerLocalFunc : : i n i t i a l i z e () ;

15 for (const auto& e l : f e _ t e s t) {

16

17 const auto i d _ t e s t = f e _ t e s t . i nd ices (e l) ;

18 for (const auto t e s t _ i d x : i d _ t e s t) {

19 data . u_loc (t e s t _ i d x . l o c a l ()) =

data . u (t e s t _ i d x . g loba l ()) ;

20 }

21

22 Eigen : : VectorXd l c lVec = AssemblerLocalFunc : : eval (data ,

e l) ;

23

24 const auto i d = f e _ t e s t . i nd ices (e l) ;

25 for (const auto t e s t _ i d x : i d) {

26

27 unsigned row_loc = t e s t _ i d x . l o c a l () ;

28 unsigned row_glo = t e s t _ i d x . g loba l () ;

29

30 vector (row_glo) += lc lVec (row_loc) ;

31 }

32 }

33

34 return std : : move(vector) ;

35 }

N

(4.g) (14 pts) [depends on Sub-problem (4.f)]

The method-of-lines ODE (0.4.12) can be rewritten in the form

~̇µ = f(~µ) + g(~µ) ,

where g : R
N → R

N is affine linear and collects all linear terms in (0.4.12), whereas f : R
N → R

N

represents the non-linear terms. This splitting forms the foundation for applying an IMEX RK-SSM.

Based on the functions compGalerkinMatrixand compNonlinearTerm from Sub-problem (4.f),

complete the implementation of a C++ class

c lass IMEXTimestep {

p u b l ic:

Final Exam, 16. August 2018 24

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

template <typename FESPACE_TEST_T>

IMEXTimestep(const FESPACE_TEST_T& fe_test);

template <typename FESPACE_TEST_T>

void compTimestep(const FESPACE_TEST_T& fe_test,

double tau, Eigen::VectorXd& y) const;

p r i v a t e:

Eigen::SparseMatrix<double> M_;

Eigen::SparseMatrix<double> A_;

Eigen::VectorXd phi_;

// Feel free to add more data members

};

The data M_, A_, and phi_ store the time-independent Galerkin matrices and vectors denoted by

M, A, and ~ϕ in (0.4.12). They should be initialized by the constructor IMEXTimestep. Argument

fe_test passes an object describing the piecewise linear Lagrangian finite element space.

The method compTimestep realizes a single step of the IMEX RK-SSM (0.4.7)+(0.4.8) for (0.4.12).

Argument y passes the vector of coefficients~µ0 of the previous timestep and the method should update

y with~µ1 after one step of the IMEX RK-SSM.

Template. A template for the class IMEXTimestep is given in the file Problem4/IMEX.hpp.

HINT 1 for (4.g): You can also use a compGalerkinMatrix to initialize the right-hand-side vector

phi_. y

SOLUTION of (4.g):

C++ code 0.4.16: Sub-problem (4.g): Implementation of IMEXTimestep

2 class IMEXTimestep {

3

4 public :

5

6 template <typename FESPACE_TEST_T>

7 IMEXTimestep (const FESPACE_TEST_T& f e _ t e s t)

8 {

9 {

10 const auto alpha = [] (const Eigen : : Vector2d& x) { return

0 . ; } ;

11 const auto gamma = [] (const Eigen : : Vector2d& x) { return

1 . ; } ;

12 const auto beta = [] (const Eigen : : Vector2d& x) { return

0 . ; } ;

13 M_ = compGalerkinMatr ix (fe_ tes t , alpha , gamma, beta) ;

14 }

15

16 {

17 const auto alpha = [] (const Eigen : : Vector2d& x) { return

1 . ; } ;

18 const auto gamma = [] (const Eigen : : Vector2d& x) { return

0 . ; } ;

19 const auto beta = [] (const Eigen : : Vector2d& x) { return

Final Exam, 16. August 2018 25

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

1 . ; } ;

20 A_ = compGalerkinMatr ix (fe_ tes t , alpha , gamma, beta) ;

21 }

22

23 using localVecAssembler_t = b e t l 2 : :NPDE : : AssemblerLocalVec ;

24 using l inearForm_t =

b e t l 2 : :NPDE : : LoadVectorAssembler<localVecAssembler_t > ;

25

26 const auto f = [] (const Eigen : : Vector2d& x) { return 1 . ; } ;

27 l inearForm_t rhs ;

28 phi_ = rhs . assembleRhs (fe_ tes t , f) ;

29 }

30

31 template <typename FESPACE_TEST_T>

32 void compTimestep (const FESPACE_TEST_T& fe_ tes t ,

33 double tau , Eigen : : VectorXd& y) const

34 {

35 Eigen : : SimplicialLDLT <Eigen : : SparseMatrix <double> >

solver_M ; solver_M . compute (M_) ;

36 Eigen : : SparseMatrix <double> MA = solver_M . solve (A_) ;

37 Eigen : : VectorXd Mphi = solver_M . solve (phi_) ;

38

39 double gamma = 0.5 + std : : s q r t (3 .) / 6 . ;

40

41 Eigen : : VectorXd kh_1

=−solver_M . solve (b e t l 2 : :NPDE : : compNonlinearTerm (fe_ tes t ,

y)) ;

42 Eigen : : SparseMatrix <double> IMA = tau∗gamma∗MA;

IMA . diagonal () . array () += 1 . ;

43 Eigen : : SimplicialLDLT <Eigen : : SparseMatrix <double> >

solver_IMA ; solver_IMA . compute (IMA) ;

44 Eigen : : VectorXd y_1 = solver_IMA . solve (y + tau∗gamma∗Mphi +

tau∗gamma∗kh_1) ;

45 Eigen : : VectorXd k_1 = Mphi − MA∗y_1 ;

46 Eigen : : VectorXd kh_2

=−solver_M . solve (b e t l 2 : :NPDE : : compNonlinearTerm (fe_ tes t ,

y_1)) ;

47 Eigen : : VectorXd y_2 = solver_IMA . solve (y +

tau ∗(1−2.∗gamma) ∗k_1 + tau∗gamma∗Mphi +

tau ∗ (gamma−1.)∗kh_1 + tau ∗2.∗(1.−gamma)∗kh_2) ;

48 Eigen : : VectorXd k_2 = Mphi − MA∗y_2 ;

49 Eigen : : VectorXd kh_3

=−solver_M . solve (b e t l 2 : :NPDE : : compNonlinearTerm (fe_ tes t ,

y_2)) ;

50 y += tau ∗0.5∗k_1 + tau ∗0.5∗k_2 + tau ∗0.5∗kh_2 + tau ∗0.5∗kh_3 ;

51 }

52

53 pr ivate :

54 Eigen : : SparseMatrix <double> M_;

55 Eigen : : SparseMatrix <double> A_ ;

Final Exam, 16. August 2018 26

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati c©SAM, ETH Zurich, 2018

56 Eigen : : VectorXd phi_ ;

57 } ;

N

End Problem 4

Final Exam, 16. August 2018 27

	Problem 1: First-order System Least-Squares Variational Formulation
	Problem 2: Blended parametric representation of curvi-linear triangles
	Problem 3: A Special Neumann problem
	Problem 4: Implicit-Explicit Runge-Kutta Single-Step Methods

