NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati

(©SAM, ETH Zurich, 2018

ETH Lecture 401-0663-00L Numerical Methods for PDEs

Final Exam

Spring Term 2018

16. August 2018, 14:00, HG G 1

\LU a
o

Family Name Grade

First Name

Department

Legi Nr.

Date 16. August 2018

Points:

Task 1 2 3 4 Total
maximum pts. | 30 25 30 50 135

achieved pts.

(100% = 90Pt, 20% = 18Pt, pass = 30Pt)

Grade scale: Points Grade
0-2 1
3-5 1.25
6-8 1.5

9-11 1.75
12-13 2.0
14-15 2.25
16-18 2.5
19-20 2.75
21-22 3.0
23-24 3.25
25-27 3.5
28-29 3.75
30-37 4.0
38-44 4.25
45-52 4.5
53-60 4.75
61-68 5.0
69-76 5.25
77-82 55
83-89 5.75

>90 6.0

Final Exam, 16. August 2018

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

e Duration: 180 minutes.
e Keep calm!

e Cell phones and other communication devices are not allowed. Make sure that they are turned off
and stowed away in your bag.

e Permitted materials (to be checked during the exam): summary of up to 10 A4 pages in the candi-
dates own handwriting. No printouts and copies are allowed.

e You may cite theorems, lemmas, and equations from the lecture document by specifying their precise
number in the supplied PDF.

e Begin each main problem on a new sheet of paper and write your name and the number of the
exercise in the top right corner.

e Write clearly with a non-erasable pen. Do not use red pen or green pen. No more than one solution
can be handed in per problem. Invalid attempts should be clearly crossed out.

e Include all considerations, auxiliary computations, etc. in your solution.

e Get a general idea of the problems. Pay attention to the number of points awarded for each subtask.
It is roughly correlated with the amount of work the task will require.

e |f you have failed to solve a sub-problem, do not give up on the entire problem, but try the next one.
Dependency between sub-problems are stated when needed.

e At the beginning of the exam follow the steps listed below. This is not counted as exam time. You
are not allowed to start the exam until you have a clear indication from an assistant or the
Professor.

1. Fill in the cover page lines and put your ETH ID card (“legi”) on the table.

2. You will get a separate form; fill it in and sign it. An assistant will collect it at the end of the
exam.

3. An assistant will give you blank exam sheets. Please put your name on each of them. Together
with the problem sheet and the cover sheet they have to be handed in when you are finished
with the exam.

Please log into the exam computer with your first and last name plus NETHZ login.
Go to the folder '~ /documentation’.

Open the main links index~-....html in a web browser and verify that they work.

N o g &

Go to the folder '~/questions’. There you will find a folder for each problem involving
implementation tasks.

8. Open your preferred editor among the available ones. Ot Creator was tested, but other
IDEs are also available. However, please notice that by using any of them you will take full
responsibility of its setting and you should do so during your own exam time.

9. Only when you are asked so, open the problem sheet. All the problems will be read aloud. You
are only allowed to read through the problems with the Professor. Do not write or type until the
actual start of the exam is announced.

Instructions concerning the C++ implementation

e Please do not modify the CMake files or any file in '~/ resources’. The time required to restore
them will be part of your own exam time.

Final Exam, 16. August 2018 2

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

e Work and save all result files (codes, plots, etc.) in the directory ’~/questions’! Only the files
in this folder will be corrected.

e In order to compile your code, if you do not want to rely on an IDE, you can create a build folder in
your home folder. E.g.,

mkdir build
cd build
cmake ../questions

e To compile one problem at a time, run
make problemX
where X is the problem number.
At the end of the examination
e Do not log out and do not turn off the computer!
e Your written results will be collected together with the instruction and problem sheets.

Problems

e If you have problems with the computer, please raise your hand to get support.

Final Exam, 16. August 2018 3

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

Problem 1: First-order System Least-Squares Variational Formulation (30 pts)

This problem studies a non-standard variational formulation of a second-order elliptic boundary
value problem. It is related to [Lecture — Chapter 2] and [Lecture — Chapter 5].

This problem does not involve coding.

Given a bounded computational domain Q) C IR? we consider the quadratic minimization problem

(u,j) = argmin J((v,q)) , (0.1.1)
(o, q)eV
2
J((v,q)) := 3||Vagrado — 7 + 1||divq —fH%z(Q) , (0.1.2)

(see [Lecture — Suppl. 2.5.11] for the definition of div) on the space
16 165y) >
V= CH(Q) x (c (Q)) . (0.1.3)
Here, « € C°(Q)) is a uniformly positive, real-valued function, and f € L?(Q)). Also recall the definition

CH(Q) := {v: Q — R continuously differentiable, v|,, = 0} . (0.1.4)

(1.a) EJ (5 pts) State a second-order scalar linear elliptic Dirichlet boundary value problem on (),
whose solution will provide the u-component of a solution of (0.1.2).

HINT 1 for (1.a): Which equations will u and j satisfy, if] ((1,j)) = 0? g

SOLUTION of (1.a):

(1
Since J((v,q)) > 0V(v,q) € V we conclude that , u and j satisfying J(v,q) = 0 are necessarily
minimizers of J:

J(u,j) =0 = (u,j) € argmin, o, J((v,q)) - (0.1.5)
It is clear from the definition of J:
do= L1
J(0,q) =0 = {fgra °=%e g oq. (0.1.6)
divq=f

By applying the divergence operator to the first equation of (0.1.6), since v|;, = 0 we have the following
second-order scalar linear elliptic Dirichlet boundary value problem on () for the ©-component solution
to (0.1.5):

div(agradu) = f on(Q, (04.7)
u=20 on 9Q).
The boundary condition for u is built into the space V, see (0.1.4).

The Dirichlet problem (0.1.7) always has a solution, from which we obtain (u,j) with J(1,q) = 0. This
confirms that the minimal value 0 is attained by J.

Final Exam, 16. August 2018 4

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(1.b) E3J (5pts) State a linear variational problem
(i) with a symmetric bilinear formar : V x V — R

(i) for which every solution of the quadratic minimization problem (0.1.1) is also a solution.

SOLUTION of (1.b):
This problem can be tackled in two ways:
() We can rely on the calculus of variations approach:

To state the variational formulation of our problem, we write:

o (0 0 a4 10)) —J((0@)

t—0 t P EV.
We obtain
lim (@ + 1w, q+tp)) —J((v,q)) _
t—0 t

= /ro_lq -pt+agradv-gradw —gradw-q —gradv-p +divqdivp —divp f dx =0,
which leads to the following variational equation
ar((v,q), (w,p)) = £((w,p)) =0 V(w,p) eV, (0.1.8)
where
((w,p)) = [divpfdr,

and ar is a symmetric bilinear form defined by

ar((v,q), (w,p)) :/sz_lq-p—|—0¢gradvgradw—gradw-q—gradv-p+diquivp dx .
(0.1.9)

(I) We can start from the observation that (0.1.2) is a quadratic minimization problem:

J((0,q)) = Jar((0,q), (0,9)) — (0, @) + [IfZ2(cy - (0.1.10)

where ar and / are as in (0.1.9) and ((l)). The identity (0.1.10) emerges from straightforward
elementary computations.

(1.c) CJ(5pts) [depends on Sub-problem (1.b) |

Show that the bilinear form ar : V x V' — IR underlying the variational problem from Sub-problem (1.b)
is continuous with respect to the energy norm

10, @) = lIgrad |22 + [divalPa + a2 (0@) € V. (0.1.11)

Final Exam, 16. August 2018 5

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

HINT 1 for (1.c): Use the two versions of the Cauchy-Schwarz inequality

/vadx < loll 2y 10l 2y Vo, € L2(Q), (0.4.12)

n

Y aipi

i=1

< (ia?) : (iﬁ?) Vo, Bi €R. (0.1.13)
i=1 i=1

SOLUTION of (1.c):

We want to prove the continuity of ar w.r.t. the energy norm || - || 4, that is

lar((v,q), (w,p))I* < Cll(v, @)% (w, p) % ¥(v,q), (w,p) € V. (0.1.14)
By applying the triangle inequality and the Cauchy-Schwarz inequality to ar in (0.1.9), we obtain
lar((0,q), (w,p))| < Cl(Hq||L2(Q)||pHL2(Q) + | grad ol ;2 || grad w|[2+
lallr2(q)ll grad w([12(q) + || grad of[120y 1Pl 2y + [div qll 2| diVP||L2(Q)>

where C1; = max{1, [|a'/2|| 1), [|¢'/?|| () }- Since, by (0.1.13), (A + B+ C + D)? < 4(A? + B2 + C?
for any real numbers A,B,C, and D, the following inequality holds:

1/2|

ar(0,0), (0D < C(alBay P12 0 + || rad ol | grad wlPs o+
||QH%2(Q)H gradw||%2(m + |l gradv||%z(0)||p\|iz(ﬂ) + | ddiH%Z(Q)H diVPH%z(Q))

for C = 4C2, which proves (0.1.14).

A

Estimates employing the Helmholtz decomposition of vector fields give the following result for the bilinear
form found in Sub-problem (1.b):

Theorem 0.1.15. Ellipticity of FOSLS bilinear form [CLM94]

There is a constant v > 0 depending only on () such that

ar((v,9), (v,9)) > 7ll(v,q)|% Y(v.q) €V.

We restrict ourselves to polygonal domains (). Next we perform a Galerkin finite element discretization
of the variational problem from Sub-problem (1.b). Based on a triangular mesh M of () we use the finite
element space

Vo = S895(M) x (S3(M))*

(1.d) CJ(5pts) [depends on Sub-problem (1.b) |

Argue why V{) N can be used for the discretization of the variational problem from Sub-problem (1.b) or,
equivalently, the minimization problem (0.1.2), though, owing to lack of smoothness, V y 7 V in general.

Final Exam, 16. August 2018 6

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

SOLUTION of (1.d):

We follow the considerations of [Lecture — Section 2.3.1]: We can use any finite element space for
the Galerkin discretization of the minimization problem (0.1.2)/the FOSLS variational problem (0.1.8) for
which the energy norm (0.1.11) is well defined, that is, finite.

In particular, by virtue of the trivial estimate [|div q|| ;2(y) < [|q][1 (), this is the case for (v, q) € H}(Q) x (H
of which the proposed finite element space is a subspace.

Remark. It turns out that the continuity of v and the continuity of normal components of q are the key
properties of valid arguments of ar.

A

(1.e) I (10 pts) For testing the Galerkin finite scheme introduced above we consider () :]0,1[2,
« =1, and choose f in (0.1.2) such that we obtain as exact solution

u(x) = sin(mx) sin(xa) , j(x) = 7 ;Ojgg’le; Cs(l)‘;gzzzg
Denote by (un,jn) € Vo,n the Galerkin finite element solution, given N := dim V n.
Describe qualitatively and quantitatively the asympotic convergence of

[—unllpq) and [|div(j —jn) 12

for N — oo, that one expects on a sequence of meshes obtained by regular uniform refinement of
some coarse initial mesh.

HINT 1 for (1.e): Base your arguments on Thm. 0.1.15 and the assertion proved in Sub-problem (1.c).
_

SOLUTION of (1.e):

To begin with, we conclude from Thm. 0.1.15 that the bilinear form ar is s.p.d. and, hence, induces a
norm ||-|| ,, which is equivalent to the energy norm ||-|| 4.

Therefore we can apply Cea’s lemma [Lecture — Thm. 5.1.15] and we obtain

I —un,j—jnIE = inf [(u—oyj—qn)l?.
(on,an)EVON
We continue based on the result of Sub-problem (1.c):
e —mvj=in)E=C inf - (llgrad(e—on)lifq + 1divG = an)lifa) + i = axlia))
N/4YN ,

<C inf rad(u — v 2 + inf . 2 '
>~ UNESE(M) || g (N)HLZ(Q) qNE(Sg(M))Z H] CINHH1(Q)

Then, to describe qualitatively and quantitatively the asympotic convergence of ||u — uN||H1(Q) and
| div(j —jn)ll12(q) for N — oo, we rely on [Lecture — Thm. 5.3.56].

Since the exact solutions u and j are smooth for this problem, by [Lecture — Thm. 5.3.56] we can rely
on the following best approximation estimates for quadratic Lagrangian finite elements (p = 2):

2
inf Uu—o < CM |l 1300y S
0= ol < C oy

Final Exam, 16. August 2018 7

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

hZ
inf div(j — < inf i — < oM ’
aneSAM) || div(j qN)HLZ(Q) = aneS M)] CINHH1(Q) =C=7 ||]HH3(Q)

with constants depending only on the shape-regularity measure of the meshes.

As N ~ h/_\j, this means that we have the following asymptotic convergence for N — oo:

lu — untll gy = O(N7Y),

Idiv(j —in)ll2i) = O(NTY) .

In each case we expect algebraic convergence with rate (—)1.

A
End Problem 1

Problem 2: Blended parametric representation of curvi-linear triangles (25 pts)

This problem explores a new way for the construction of parametric finite elements. It relates to
[Lecture — Section 3.8]

This problem relies on EIGEN for an implementation in C++.

The figure beside displays a so-called curvi-linear tri-
angle that is a bounded domain K C IR? with three

corners a°, a', and a2, joined by non-intersecting

Curves 7o, Y12, and 7.

These three curves are given by smooth parameteri—u

zations:
Yo, Y12, Va0 : [0,1] — R?
such that
’YOl(O) = aO ’ Yo1 (1) = tll ,
12(0) =a', (1) =a®,
’720(0) = az 4 ’720(1) - ao . Fig. 1

Based on this description of the curvi-linear triangle, we introduce the mapping @ : [0,1]?> — RR?,

D (%) :=v01(¥1) + 720(1 = X2) — 701 (0) + X1¥12(X2) + X2y12(1 — X1)— 02.1)
X1(vo1 (1 = X2) + ¥20(1 = X2) — ¥01(0)) — X2 (V01 (X1) + ¥20(X1) — ¥01(0)) ,

forx = [%y,%] € [0,1)%

Final Exam, 16. August 2018 8

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(2.a) I (5pts) Show that ® from (0.2.1) satisfies

q’({g]) =yn(), 0<¢<1. (0.2.2)

SOLUTION of (2.a):

By miraculous cancellation we have

(D(g) = 701(6) + 702(1) = 701(0) + §712(0) — Ev01 (1) — E20(1) + G701 (0)
o :701(5)
q>(2):701<o>+720< — 1) = 701(0) + 77115(1) — 7701(0) = 7720(0) + 7701 (0)
=v(1—1),
1—1]
@([-) = 701 (1= 7) +720(1 =) = ¥61(0) + (1 = T)y3(7) + T12(7) -

(1=1)701(1=7) = (1 = 7)1 — 1)+
(1 =1)701(0) = 701 (1 = T) — T2 (1 = T) + 7701 (0)
= Y12(7) -
for 0 < ¢, T < 1. The first identity is (0.2.2) and is all that is required to solve this sub-problem.

(2.b) (J(3pts) Give a geometric interpretation of (0.2.2).

SOLUTION of (2.b):

The mapping { — [g} 0 < ¢ <1, parameterizes the line segment Hg}, [é“ Hence, the mapping
@ maps this line segment to the curve given by the parameterization ;.

(2.c) J(3pts) We write K for the (reference) triangle with vertices [8}, [(ﬂ , and [(1)]

State a formula analogous to (0.2.2) that expresses the fact that ® from (0.2.1) maps the edge of K
connecting [é] and [] to the edge of K connecting a' and a?

SOLUTION of (2.c):

This formula has already been given in the solution of Sub-problem (2.a):

@({“TD —ap(t), 0<T<1.

T

Final Exam, 16. August 2018 9

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(2.d) EJ(3pts) We write 7, for the derivative of -y, with respect to its argument, given x € {01,12,20}.
Using this notation give a formula for the Jacobian D® : [0, 1]> — R*? of ®.

HINT 1 for (2.d): The computations boil down to applying the product rule. Recall that the columns
of the Jacobian are partial derivatives. 2

SOLUTION of (2.d):

The Jacobian is defined as

Thus the colunns of the Jacobian are
D@ (%)].; = Y01 %1 + Y12(F2) = T2¥12(1 = %1) — Y01 (1 — X2) — ¥20(1 — %2)
+ 701(0) = 2901 (X1) — X2%0(31) ,
[D®(%)]., = —F20(1 = 22) + X1912(%2) + 7121 — X1) + T1For (1 — %2) + X1920(1 — X2)
= Yo1(X1) = Y20(%1) + 701 (0) -

A

In some EIGEN-based C++ code curves [0,1] — R? are represented by child classes of the following
virtual base class:

class Curve {
public:
virtual Eigen::Vector2d operator () (double parameter) const = 0;
virtual Eigen::Vector2d derivative (double parameter) const

i

Il
(@)
~e

The operator () returns a point on the curve when given a parameter € [0, 1], whereas the method
derivative () returns the derivative vector.

(2.€) J(3pts) [depends on Sub-problem (2.d) |

Implement a C++ function

Eigen::MatrixXd JacobianPhi (const Eigen::Vector2d& point,
const Curve& gammaOl, const Curve& gammal?, const Curve& gammaZz20)

that provides the Jacobian of @ from (0.2.1) when one supplies the coordinates of a point € [0, 1],
given g1, Y12, and yy.

Template. A template for the function JacobianPhi is given in the file Problem2 /BlendedParameterizat

SOLUTION of (2.e):

C++ code 0.2.3: Sub-problem (2.e): Implementation of JacobianPhi

2 | matrix_t JacobianPhi(const coord_t& point,
3 const Curve& gamma0i, const Curve& gammail2,

Final Exam, 16. August 2018 10

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

const Curve& gamma20)

5 matrix_t J(2,2); // Variable for returning Jacobian

6 // The formulas for the columns of the jacobian have been derived
in Sub-problem (2.d)

7 J. (0) = gammaO1.derivative (point[0]) + gammail2(point[1]) —

8 point[1]xgammal2. derivative (1.—point[0]) —

9 (gammal1(1.—point[1]) + gamma20(1.—point[1]) —

gammal1(0.)) —
10 point[1]*(gamma01. derivative (point[0]) +

gamma20. derivative (point[0])) ;
1 J. (1) = —gamma20.derivative (1.—point[1]) +

12 point[0]xgammal2. derivative (point[1]) +
gammal2(1.—point[0]) +
13 point[0]*(gamma01.derivative (1.—point[1]) +
gamma20. derivative (1.—point[1])) —
14 (gammali (point[0]) + gamma20(point[0]) — gamma01(0.));
15 return J;

A

(2.1) (8 pts) The observations made in Sub-problem (2.b) and Sub-problem (2.c) hint that ¢(K) K,

which we are going to assume.

Implement a C++ function

evalBlendLocMat (const Curve& gammaOl,
const Curve& gammalZz,
const Curve& gammaZz20) ;

that approximately computes the local element matrix for the bilinear form
(u,v) — / grad u - grad vdx
9

for the Laplacian —A on K using parametric linear Lagrangian finite elements based on the parametriza-
tion of K through ® from (0.2.1). Function arguments gamma01l, gammal?2, and gamma20 of type
const Curves specify the curves 7y, 1, @and 75, respectively.

Consider the following quadrature rule to approximately evaluate any integrals over triangles: for a
generic triangle T with vertices x, y, z € IR?, use

[rax~ Bl (r(1rm) + 11 +2) + 1 (2= +2))

Template. A template for the function evalBlendLocMat is giveninthefile Problem2/BlendedParamet

HINT 1 for (2.f): Matrices of EIGEN are supplied with methods determinant (), inverse (),
and (). J

SOLUTION of (2.f):

Final Exam, 16. August 2018 i

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

C++ code 0.2.4: Sub-problem (2.f): Implementation of evalBlendLocMat

» | matrix_t evalBlendLocMat (const Curve& gamma01i,

3 const Curve& gammai2,

4 const Curve& gamma20)

s | {

6 // Variable for returning 3X3 element matrix

7 matrix_t IclIMat(3,3); IcIMat.setZero();

8 matrix_t xi(2,3); // coordinates of midpoints of curves

9 xi.col(0) << 0.5, 0.; xi.col(1) = 0.5, 0.5; xi.col(2) = 0., 0.5;
10 // (constant) gradients of barycentric coordinate function on the

reference element,
11‘ // which are the preimages of the local shape functions under

pullback

12 matrix_t gradEval(3,2);

13 gradEval << —1., —1., // grad/A\l

14 1., 0., // grad?\z

15 0., 1.; // gradxg

16 // Generate element matrix by adding up rank-1 matrices formed
from gradients

17 // of local shape functions at midpoints of edges.

18 for(int 1=0; l<xi.cols(); ++I) {

19 coord_t xi_I| = xi.col(l);

20 // Call auxiliary function implemented in Sub-problem (2.e)

21 matrix_t Ji_| = JacobianPhi(xi_l, gamma01, gammail2, gamma20) ;

2 numeric_t detdi_| = std::abs(Ji_I.determinant());

23 // Transformation matrix for gradients, see LLecture —

Lemma 3.8.26]

24 matrix_t invdT_l = Ji_l.inverse () .transpose();

25 // Transformed gradient

2% matrix_t grad_b_| = gradEval % invdT_I;

27 // Rank-1 update of element matrix

28 IcIMat += detdi_| % grad_b_| % grad_b_I.transpose() ;

29 }

30 // Don’t forget the quadrature weight %: area

31 // of the reference triangle ::%!

% return IclMat / 6.;

33 }

Problem 3: A Special Neumann problem (30 pts)

A
End Problem 2

This problem deals with a scalar second-order elliptic boundary with non-standard boundary condi-
tions. It draws on techniques from [Lecture — Chapter 2], [Lecture — Chapter 3], and [Lecture —
Chapter 5.

Coding for this problem relies on EIGEN and BETL.

Final Exam, 16. August 2018 12

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

For a connected bounded Lipschitz polygon) C IR? define
HI(Q) == {0 € H'(Q) : /vdS —0). (0.3.1)
20
On this Sobolev space we consider the variational problem
u € Hi(Q): /gradu -gradvdx = /fv dx Yo e H)(Q), (0.3.2)
Q Q

with source function f € L2(Q)).

(3.a) J(3pts) Discuss the uniqueness of solutions of (0.3.2).

SOLUTION of (3.a):
We follow the considerations from [Lecture — § 2.2.54].

For uniqueness, we have to prove that the bilinear form a stemming from the variational formulation of
the problem is positive definite, that is

a(v,v) >0 Yoe Hy(Q)\{v=0inQ}. (0.3.3)

Using the variational formulation, we write

a(u,v) = /Q grad u - grad v dx,

l(v) = / vdx,
(0)= [f
where a is a bilinear form and / is linear. To prove (0.3.3), we write

a(v,v) = / |grado||* dx =0 ifandonlyif gradv=0.
0

Then, v = C on (), where C is a constant. Since v € H}(Q), then [, C dS = 0, thatis C = 0, and
a must be positive definite.

A

(3.b) (I (5pts) State the second-order elliptic boundary value problem for which (0.3.2) is the weak
formulation.

SoLUTION of (3.b):

The approach is similar to that elaborated in [Lecture — Ex. 2.5.23].

We first test with functions v € H}(Q)) and tease out the PDE by integration by parts: —Au = f.
Then test the PDE with v € H%(Q) and find after integration by parts that

/ gradu-nvdS=0 Yoe H)(Q). (0.3.4)
0Q)

Final Exam, 16. August 2018 13

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

Since the average of v over d() vanishes, a constant value for grad u - n satisfies this condition. If
grad u - n is not constant, then (0.3.4) cannot hold. Thus we have found the boundary condition

gradu -n =const on dQ).

A

Since there is no simple finite element subspace of H%(Q), the following augmented variational formu-
lation is often used:
radu - gradvdx + vdx = vdx Yo e H(Q),
wen, logndie e = 7 @
neR [pudx =0 ViieR.
20

(0.3.5)

(3.c) J(3pts) Show that the solution u of the variational problem (0.3.5) solves the variational problem
(0.3.2).

SOLUTION of (3.c):

Since [, uu dS =0 Vu € R, the second equation implies u € H2(Q). For v € H3(Q) € H'(Q),
f n vdx = 0 and therefore the solution u of the variational problem (0.3.5) solves the variational prob-

00
lem (0.3.2).

(3.d) (I (5pts) [depends on Sub-problem (3.b) |

How is the value for the scalar solution component 77 € IR in (0.3.5) related to the u-component of the
solution of (0.3.5)?

SOLUTION of (3.d):

We follow the same procedure of Sub-problem (3.b) for (0.3.5). Using integration by parts, the first
equation of (0.3.2) becomes

ou
vdS = —/ —uovdS.
7 00 a0 On
Since ?)_Z = const on (), as we have seen in Sub-problem (3.b). we obtain 7 = —const.

A

We equip () with a triangular mesh and consider the finite element Galerkin discretization of (0.3.5) based
on the piecewise linear Lagrangian finite element space SP(M) and its nodal ordered basis {bﬁ,}é\il
N := dim S) (M), of “tent functions”. This converts (0.3.5) into a linear system of equations of the

following block form
A c||i| |o
& ol -[2]

where i is the vector of expansion coefficients of the Galerkin solution uy € H'(Q) w.r.t. the nodal basis.

Final Exam, 16. August 2018 14

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(3.e) I (3pts) Give formulas for the entries of the matrix A € RNN and of the column vectors ¢ € RN
and ¢ € RV,

SOLUTION of (3.e):

Entries of matrices and vectors arise from plugging basis functions into the (bi-)linear forms of (0.3.5):
Aij= /Q grad b grad b]N dx,
¢ = / pN ds,
00
- N
5~ [5o ax,

i,j=1,...,N.

We have at our disposal a BETL-based C++ function

template <typename FESPACE, typename FUNC_ALPHA, typename FUNC_GAMMA,
typename FUNC_BETA>
std::vector<kEigen::Triplet<double> >
compGalerkinMatrix(const FESPACE& fe_spc,
FUNC_ALPHA&& alpha, FUNC_GAMMA&S& gamma,
FUNC_BETA&& beta);

that, given a mesh M, computes the SY(M)-based finite element Galerkin matrix in triplet format for the
variational boundary value problem

u e H'(Q): /Q(x(x) grad u(x) - grad v(x) + 7(x) u(x) v(x) dx—|—/aﬂﬁ(x)u(x)v(x) dS(x) =

/Q F(x)o(x)dx Voe H(Q), (037)

where &, : Q — R, B : 9Q — R are bounded, uniformly positive coefficient functions, and f € L?(Q)).
The argument fe_spc passes the FE space defined on M, while alpha, gamma, and beta are func-
tors for the scalar coefficients «, -y, and p.

Code. The function compGalerkinMatrix is implemented in the file
Problem3/SolAvgBoundary.cpp,

while the auxiliary classes AssemblerLocalMat and AssemblerLocalVec can be found in the file
utils/AssemblerLocal.hpp.

(3.f) (J(6pts) [depends on Sub-problem (3.f) |

Based on the function compGalerkinMatrix, write a BETL-based C++ function ,

template <typename FESPACE>
Figen::SparseMatrix<double> augmentMatrix(const FESPACE& fe_spc,
const Eigen::VectorXd& c)

that augments the appropriate sparse coefficient matrix assembled by compGalerkinMatrix in
triplet format to obtain the full Galerkin matrix for the linear system of equations (0.3.6). Argument

Final Exam, 16. August 2018 15

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

c passes vector ¢ from (0.3.6), while argument fe_test passes an object describing the piecewise
linear Lagrangian finite element space.

Template. A template for the function augmentMatrixis giveninthefile Problem3/SolAvgBoundary.c

HINT 1 for (3.f): Carry out matrix manipulations in triplet format and build the sparse matrix a final
step. J

SOLUTION of (3.):

C++ code 0.3.8: Sub-problem (3.f): Implementation of augmentMatrix

» |template <typename FESPACE_TEST T>

s |sparseMatrix_t augmentMatrix(const FESPACE_TEST T& fe_test, const
vector_t& c)

s 1

5 const auto alpha = [](const coord_t& x) { return 1.; };

6 const auto gamma = [](const coord_t& x) { return 0.; };

7 const auto beta = [](const coord_t& x) { return 0.; };

8

9 tripletMatrix_t A = compGalerkinMatrix (fe_test, alpha, gamma,

beta) ;

10

1 size_t numDofs = c. O ;

12 for(int i=0; i<numDofs; ++i) {

13

14 A.push_back(triplet_t(i, numDofs, c(i)));

15 A.push_back(triplet_t(numDofs, i, c(i)));

16 }

17

18 sparseMatrix_t Ac(numDofs+1,numDofs+1) ;

19 Ac. (A.begin(), A.end());

20 return Ac;

21 }

(3.9) EJ(5pts) [depends on Sub-problem (3.) |

Based on the function compGalerkinMatrix, write another C++ function

template <typename FESPACE>
HI computeCVector (const FESPACE& fe_test)
that returns the column vector ¢ € RN as defined in (0.3.6).

For your implementation you should use only only the function compGalerkinMatrix and tools
offered by EIGEN.

Template. A template for the function computeCvVectorisgiveninthefile Problem3/SolAvgBoundary.

HINT 1 for (3.9): You may use the method setFromTriplets of Eigen::SparseMatrix<double>
to create a matrix from the data returned by compGalerkinMatrix. J

Final Exam, 16. August 2018 16

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

SOLUTION of (3.9):

Let B be the matrix returned by compGalerkinMatrixfora =0,y = 0,and = 1. Then we have

c=B1, 1=[1 1 --- 1] eRV.

C++ code 0.3.9: Sub-problem (3.f): Implementation of computeCVector

. |template <typename FESPACE_TEST T>
s |[vector_t computeCVector (const FESPACE _TEST T& fe_ test)

s |4

5 const auto alpha = [](const coord_t& x) { return 0.; };

6 const auto gamma = [](const coord_t& x) { return 0.; };

7 const auto beta = [](const coord_t& x) { return 1.; };

8

9 tripletMatrix_t B = compGalerkinMatrix (fe_test, alpha, gamma,
beta) ;

10 sparseMatrix_t B_(fe_test.numDofs () fe_test.numDofs ()) ;

1 B .setFromTriplets (B.begin(), B.end());

13 return B_ x vector_t::Ones(fe_test.numDofs());

A

End Problem 3

Problem 4: Implicit-Explicit Runge-Kutta Single-Step Methods (50 pts)

This problem concerns a special class of timestepping schemes for parabolic evolution problems.

This problem relies on EIGEN and BETL.

The article [ARS97] introduces s-stage (s € IN) so-called implicit-explicit (IMEX) partitioned Runge-
Kutta single-step methods (RK-SSMs). Their definition relies on two elementary RK-SSMs given through
their respective Butcher schemes, see [Lecture — § 6.1.79]:

C1 |41 O 0
C2 | a1 Ay 0
c| A . : : : ¢,b c R
(A) b - 7 Q,l E RS'S , (041)
Cs | g1 - -- Ass
by by bs

Final Exam, 16. August 2018 17

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

0 0 0
[i 0 0
3 | a3 ax O 0

2 : : - : E/]A? S]Rs+1,
(B) b7 - : : B ' "9 e RSHLSTL (0.4.2)

Cs+1 as_l’_l,l o e oo 115+1,S O
b, by bt

The IMEX RK-SSM is applied for the numerical integration of an autonomous ordinary differential equation
of the form

au="f(u)+gu), fg:RYN =RV, NcN. (0.4.3)
This results in a discrete evolution given by

(kg = f(up)

for i=1,...,5s do

B i i .

u, :=ug+7T Z ll,‘/jk]‘ +7T Z ZZ\H_L]‘k]‘ ,
j=1 j=1

k; == g(u;),

| ki = f(wy),
s s+1
up = u0—|-TZb]'k]‘—|-T b]k]
-

\ j=1]

u; =Y Ty (0.4.4)

(4.a) 1 (5pts) Algorithm (0.4.4) entails solving potentially non-linear equations to determine the in-
crements k;, i = 1,...,s, which depend upon k; = g(u;). For the scalar case N = 1 formulate the
Newton iteration that can be employed to approximately find u;, i =1,...,s. The function g can be
assumed to be continuously differentiable.

SOLUTION of (4.a):

The scalar Newton iteration for solving f () = 0 for a function f(u) € C'(R) is

F(qy (1)
1) S
F(um)

In Eq. (0.4.4), we can define f(u;) as

provided that the derivative (1)) # 0.

i—1 i
f(ui) =Ug+T Z ai,]‘k]' +T Z ZZ\H_L]‘k]' —|—Ta,-,,-g(u,-) —U;.
j=1 j=1

J/

indepen?j;nt of u;
Hence, the Newton iteration is
i

(n+1) _ () 1 — .=)y ()
up = — () uo+T Y aiki+T Y iy ki + Taig(u;) —)
Ta;;8 (u;) — 1 j=1 j=1

Final Exam, 16. August 2018 18

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(4.b) (I (5pts) State the definition of the IMEX RK-SSM from (0.4.4) in the “explicit form”

(El = f(uo)
for i=1,...,s do

u; :— I

up = YTy ki :=g(u;), (0.4.5)
ki1 = f(u;),
S s+1 -
upi=ug+71) bki+1) bk,
\ =1 j=1

when it is applied to the ODE
u=f(u)+gu) with glu):=—-Au, AcRNNspd., (0.4.6)
and a generic continuous function f : RN — RN.

You need only write down the contents of the black box, but neither k; nor u; must occur in your
expression.

SOLUTION of (4.b):
Rewrite u; in (0.4.4) as

i—1 i
u i =u+7 Z ll,‘/jk]‘ + Tai,ig(ui) + T Z 71\,4_1,]'1(]‘ .
= =i

Then, by replacing g(u) := —Au with A given and s.p.d., you get
. i—1 i .
u; = (I + TLZZ"Z'A) u + 7T Z Lli’]'k]' +T 2 ai+1,]'k]' .
& =

j=1

Note that for s.p.d. A also the matrix I + 7a4; ;A is s.p.d. and, hence, invertible.

A
Now we focus on the concrete 2-stage IMEX RK-SSM defined by
v v 0
c| A R 34+3
2 2
R 0 0 0 0
c|l N 0% 0% 0 0
B =% T 1-q]y-120-9) 0" (0:48)
0 1 1
2 2

(4.c) CJ(10pts) [depends on Sub-problem (4.b) |

Perform an empirical study of the order of the IMEX RK-SSM given by (0.4.7) and (0.4.8) by solving the
scalar initial value problem (IVP)

y=fW)+8w), fly):=—v*, sy) =y, y(0) =1, (0.4.9)

Final Exam, 16. August 2018 19

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati

(©SAM, ETH Zurich, 2018

with exact solution

_exp(t)
y(t) = 3+ exp(h) ’

on a sequence of equidistant meshes of [0, 1] with meshwidths T :=273,274,...,2719 and monitoring

the maximal error in the meshpoints:

err(T) :=]:r?axM y(GT)—yD|, T:=MT.

To that end write a C++ function

double IMEXError(int M)

that computes err (M) for the IVP given in (0.4.9). Then tabulate the error values for M = 23,24 ... 210
and describe the convergence qualitatively and quantitatively.
Template. A template for the function IMEXError is given in the file Problem4 /IMEX. hpp.
SOLUTION of (4.c):
C++ code 0.4.10: Sub-problem (4.c): Implementation of IMEXError
> |double IMEXError(int M)
s [{
4 double tau = 1./M;
5 double y 0.25;
6 double t = 0.;
7 double err = 0.;
8
° double gamma = 0.5 + std::sqrt(3.)/6.;
1 for(int i=0; i<M; ++i) {
13 double kh_1 = —yxy;
14 double y 1 = (y + tauxgammaxkh_1) / (1. — tauxgamma) ;
15 double k_1 = vy 1;
16 double kh_2 = —y_1xy 1;
17 double y 2 = (y + taux(1—2.xgamma)xk_1 +
tau x(gamma—1.)xkh_1 + taux2.x(1.—gamma)xkh_2) / (1. —
tauxgamma) ;
18 double k2 = vy 2;
19 double kh_3 = —y_2xy 2;
20 y += taux*x0.5%xk_1 + taux*0.5xk_2 + taux0.5xkh_2 + taux*0.5xkh_3;
22 t += tau;
2 double y ex = std::exp(t)/(3.+std::exp(t));
24 double err_t = std::abs(y — y_ex);
2 if(err_t > err) {
2% err = err_t,;
27 }
28 }
Final Exam, 16. August 2018 20

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

29

%0 return err;

at |}

Table of error:
M error

23 | 8.38411e-05
2% | 9.30965e-06
25 | 1.10098e-06
26 | 1.33980e-07
27 | 1.65278e-08
28 | 2.05249e-09
27 | 2.55726e-10
2101 3.19141e-11

convergence rate: 3.038751

error

< Log-log plot of err vs. M. The error curve is al-
109 10° 102 10 104 most a line and from its slope we can read off a
Fig. 2 M

’ convergence rate of ~ 3.

A

For a bounded connected polygonal QO C IR? we consider the following non-linear 2nd-order parabolic
evolution problem in weak form: seek u : [0, T] — H'(Q) such that

du

ai}v—kgradu-gradqusinh(u)vdx+/a uvdS:/ vdS Vo€ HY(Q),
o) Q

Q) (0.4.11)
u(0) = up € H'(Q),
where 1 is given.

(4.d) CJ(5pts) State the initial-boundary value problem in strong (PDE) form for which (0.4.11) is the
associated spatial variational formulation.

SOLUTION of (4.d):

It boils down to “undoing” integration by parts using Green’s formula. The linear terms are the standard
terms occurring in the variational formulation of a scalar linear parabolic boundary value problem with
spatial radiation/impedance boundary conditions, see [Lecture — Eq. (2.9.8)]. The non-linear term is
of order zero and is not affected by integration by parts.

aa—Z:—Au—i—sinh(u) =0 in Q,

gradu-n+u=1 on dJQ,
u(0) = up .

A

In the spirit of the method of lines (MOL) we perform the spatial semidiscretization of (0.4.11) by means
of a Galerkin finite element discretization based on the Lagrange finite element space S{](/\/l), M a

Final Exam, 16. August 2018 21

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

triangular mesh of (), and end up with an initial value problem for an ordinary differential equation of the

form
Mji + Ajfi +x(fi) = ¢, 0.4.12)
ﬁ(()) = ﬁo ’

with suitable matrices M, A € RN'N, anon-linear functionr : RN — RN, andg € RY, N := dim S{(M).
Here t — i(t) is the time-dependent vector of basis expansion coefficients of the semidiscrete solution

t — un(t) € SY(M). The use of standard nodal basis functions {bﬁ,}éil is assumed.

(4.e) I(3pts) Give formulas for the entries of the matrices M and A and of the column vector ¢ € RN
in terms of suitable integrals of expressions involving the basis functions bﬁ,.

SOLUTION of (4.e):

From [Lecture — Section 6.1.4] it is immediate:
(M);; = /Q by by dx,
(A);; = /Q grad bl - grad bl dx + /BQ b, b, ds,
o i
((P)ij ~ Jio by ds,

withi,j =1,...,N.

We have at our disposal a BETL-based C++ function

template <typename FESPACE_TEST_T, typename FUNC_ALPHA, typename
FUNC_GAMMA, typename FUNC_BETA>

Eigen: :SparseMatrix<double >

compGalerkinMatrix(const FESPACE_TEST_T& fe_test,

FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma, FUNC_BETA&& beta)

that, given a mesh M, computes the SY(M)-based finite element Galerkin matrix for the variational
boundary value problem

u e H'(Q): /Q(x(x) grad u(x) - grad v(x) + 7(x) u(x) v(x) dx—|—/mﬁ(x)u(x)v(x) dS(x) =

/Q f(x)o(x)dx Yoe HY(Q), (0.4.13)

where &, : QO — R, B : 9 — R are bounded, uniformly positive coefficient functions, and f € L?(Q)).
The argument fe_test passes the FE space defined on M, while alpha, gamma, and beta are
functors for coefficient functions «, -y, and .

Code. The function compGalerkinMatrix is implemented in the file
Problem4/IMEXRKSSM. cpp,

while the auxiliary classes AssemblerLocalMat and AssemblerLocalVec can be found in the file
utils/AssemblerLocal.hpp.

Final Exam, 16. August 2018 22

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

(4.f) EJ(8pts) Write a BETL-based C++ function

template <typename FESPACE_TEST_T>
HI compNonlinearTerm(const FESPACE_TEST_T& fe_test,
const HE & u)

that globally assembles r(j), where r is the non-linear mapping (0.4.12). The vector of coefficients 7 is
passed as argument u.

To that end you have to complete the eval method of the C++ st ruct AssemblerLocalFunc,

template <typename BUILDER_DATA, typename ELEMENT>
inline static result_t eval(const BUILDER DATA& data, const
ELEMENT& el);

which is called by compNonlinearTermand locally assembles r(ji). For the evaluation of the inte-
gral involved in the definition of r, rely on the composite trapezoidal rule over the mesh M, see [Lecture
— Eq. (3.4.51)]. The member vector u_1oc of the data argument stores the coefficients of the local
FE basis functions.

Templates. Templates for the function compNonlinearTerm and the auxiliary class Assembler-
LocalFunc are given in the file Problem4 /AssemblerFunc. hpp.

SOLUTION of (4.f):

C++ code 0.4.14: Sub-problem (4.f): Implementation of AssemblerLocalFunc

2 template <typename BUILDER_DATA, typename ELEMENT>
3 inline static result_t eval(const BUILDER DATA& , const
ELEMENT& el)

5 ETH_ASSERT_MSG(el.refElType () ==
eth ::base :: RefEIType :: TRIA,
6 "This assembler only works with 2D
triangles.");
8 result_t result; result. ()
9
10 const auto& geom = el.geometry () ;

1 double elem_area = geom.volume () ;

13 for(int 1=0; I<3; ++I) {

14 result(l) = elem_area/3. x std::sinh(.u_loc(1));
15 }

16

17 return std::move(result);

C++ code 0.4.15: Sub-problem (4.f): Implementation of compNonlinearTerm

2 template <typename FESPACE_TEST T>
3 i compNonlinearTerm (const FESPACE_TEST T& fe_test,

Final Exam, 16. August 2018 23

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

4 const Eigen::VectorXd& u)
5 {

6 struct data_t {

7 Eigen :: VectorXd u;

8 Eigen :: Vector3d u_loc;

9 data_t(const Eigen::VectorXd& u):

10 u(u) {}

1 } data(u);

12

13 Eigen ::VectorXd vector(fe_test.numDofs()); vector.setZero();
14 AssemblerLocalFunc::initialize () ;

15 for(const auto& el : fe_test) {

16

17 const auto id_test = fe_test.indices(el);

18 for(const auto test_idx : id_test) {

19 data.u_loc(test_idx.local()) =

data.u(test_idx.global());
20 }

21

2 Eigen :: VectorXd IclVec = AssemblerLocalFunc::eval(data,
el);

23

2 const auto id = fe_test.indices(el);

2 for(const auto test_idx : id) {

26

27 unsigned row_loc = test_idx.local () ;

28 unsigned row_glo = test_idx.global () ;

29

30 vector(row_glo) += IclVec(row_loc);

a1 }

% }

33

3 return std::move(vector) ;

35 }

(4.9) EJ(14pts) [depends on Sub-problem (4.f) |
The method-of-lines ODE (0.4.12) can be rewritten in the form

i= () +g(#),

where g : RN — RN is affine linear and collects all linear terms in (0.4.12), whereas f : RN — RN

represents the non-linear terms. This splitting forms the foundation for applying an IMEX RK-SSM.

Based on the functions compGalerkinMatrixand compNonlinearTermfrom Sub-problem (4.f),

complete the implementation of a C++ class

class IMEXTimestep ({
public:

Final Exam, 16. August 2018

24

NumPDE, ST’18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

template <typename FESPACE_TEST_T>

IMEXTimestep (const FESPACE_TEST_T& fe_test);

template <typename FESPACE_TEST_T>

void compTimestep(const FESPACE_TEST_T& fe_test,

double tau, Eigen::VectorXd& y) const;

private:

Figen::SparseMatrix<double> M_;

Figen::SparseMatrix<double> A_;

Eigen::VectorXd phi_;

// Feel free to add more data members

i

The data M_, A_, and phi_ store the time-independent Galerkin matrices and vectors denoted by
M, A, and ¢ in (0.4.12). They should be initialized by the constructor IMEXTimestep. Argument
fe_test passes an object describing the piecewise linear Lagrangian finite element space.

The method compTimestep realizes a single step of the IMEX RK-SSM (0.4.7)+(0.4.8) for (0.4.12).
Argument y passes the vector of coefficients zi, of the previous timestep and the method should update
y with 7i; after one step of the IMEX RK-SSM.

Template. A template for the class IMEXTimestep is given in the file Problem4 /IMEX. hpp.

HINT 1 for (4.9): You can also use a compGalerkinMatrix to initialize the right-hand-side vector
phi_. J

SOLUTION of (4.9):

C++ code 0.4.16: Sub-problem (4.g): Implementation of IMEXTimestep

2 [class IMEXTimestep {

3

+ [public:

5

6 template <typename FESPACE _TEST T>

7 IMEXTimestep(const FESPACE _TEST T& fe_test)

8 {

0 {

10 const auto alpha = [](const Eigen::Vector2d& x) { return
0.; };

1 const auto gamma = [](const Eigen::Vector2d& x) { return
iheh B3

12 const auto beta = [](const Eigen::Vector2d& x) { return
0.; };

13 M_ = compGalerkinMatrix (fe_test, alpha, gamma, beta);

14 }

15

16 {

17 const auto alpha = [](const Eigen::Vector2d& x) { return
s be

18 const auto gamma = [](const Eigen::Vector2d& x) { return
ORs

19 const auto beta = [](const Eigen::Vector2d& x) { return

Final Exam, 16. August 2018 25

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati

(©SAM, ETH Zurich, 2018

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

NSRS
A_ = compGalerkinMatrix (fe_test, alpha, gamma, beta);

}

using localVecAssembler_t = betl2::NPDE:: AssemblerLocalVec;
using linearForm_t =
betl2 ::NPDE:: LoadVectorAssembler<localVecAssembler_t >;

const auto f = [](const Eigen::Vector2d& x) { return 1.; };
linearForm_t rhs;
phi_ = rhs.assembleRhs(fe_test, f);

}

template <typename FESPACE_TEST_T>
void compTimestep(const FESPACE_TEST T& fe_test ,
double tau, Eigen::VectorXd& y) const

{

Eigen :: SimplicialLDLT<Eigen :: SparseMatrix<double> >

solver_M; solver_M.compute (M) ;
Eigen :: SparseMatrix<double> MA = solver_M.solve(A_);
Eigen ::VectorXd Mphi = solver_M.solve(phi_);

double gamma = 0.5 + std::sqrt(3.)/6.;

Eigen ::VectorXd kh_1
=—solver_M.solve(betl2 ::NPDE::compNonlinearTerm(fe_test ,
y));

Eigen ::SparseMatrix<double> IMA = tausxgammaxMA;
IMA.diagonal () .array () += 1.;

Eigen :: SimplicialLDLT<Eigen :: SparseMatrix<double> >
solver_IMA ; solver_IMA .compute (IMA) ;

Eigen::VectorXd y_1 = solver_IMA .solve(y + tauxgammaxMphi +
tauxgammaxkh_1) ;

Eigen ::VectorXd k_1 = Mphi — MAxy_1;

Eigen ::VectorXd kh_2
=—solver_M.solve(betl2 ::NPDE::compNonlinearTerm(fe_test ,
y_1));

Eigen ::VectorXd y_2 = solver_IMA.solve(y +
taux(1 —2.xgamma) xk_1 + tausxgammaxMphi +
tau x(gamma—1.)xkh_1 + taux2.x(1.—gamma)xkh_2) ;

Eigen::VectorXd k_2 = Mphi — MAxy_2;

Eigen :: VectorXd kh_3
=—solver_M.solve(betl2 ::NPDE::compNonlinearTerm(fe_test ,
y_2));

y += taux*x0.5%xk_1 + taux0.5xk_2 + taux0.5xkh_2 + taux*0.5xkh_3;

}

private:
Eigen :: SparseMatrix<double> M_;
Eigen :: SparseMatrix<double> A_;

Final Exam, 16. August 2018

26

NumPDE, ST'18, Prof. R. Hiptmair, L. Baldassari, D. Casati (©SAM, ETH Zurich, 2018

56

1

57

Eigen ::VectorXd phi_; ‘

A

End Problem 4

Final Exam, 16. August 2018 27

	Problem 1: First-order System Least-Squares Variational Formulation
	Problem 2: Blended parametric representation of curvi-linear triangles
	Problem 3: A Special Neumann problem
	Problem 4: Implicit-Explicit Runge-Kutta Single-Step Methods

