
NumPDE, ST’18, Prof. R. Hiptmair, E. Schulz, O. Rietmann c©SAM, ETH Zurich, 2019

ETH Lecture 401-0663-00L Numerical Methods for PDEs

Midterm Exam
Spring Term 2019

April 1, 2019, 15:15, HG F 1

Don’t

panic!

Family Name a a %

First Name

Department

Legi Nr.

Date April 1, 2019

Points:
1 2 3 4 Total

max 5 6 6 8 25

achvd

• This is a closed-book exam.

• Keep only writing material and Legi on the table.

• Keep mobile phones, tablets, smartwatches, etc. turned off in your bag.

• Fill in this cover sheet first.

• Turn the cover sheet only when instructed to do so.

• Then write your name and Legi Nr. on each page.

• Write your answers in the appropriate fields on these problem sheets.

• Wrong ticks in multiple-choice boxes will lead to points being subtracted.

• Anything written outside the answer boxes will not be taken into account.

• Do not write with red/green color or with pencil.

• Make sure to hand in every sheet.

• Two blank pages at the end of the exam: space for notes

• Duration: 30 minutes.

Midterm Exam, April 1, 2019 1

Name: ETH ID No.:

Problem 0-1: Deducing the strong form of second-order elliptic boundary value problem

In [Lecture → Section 1.5] we have seen how to extract the strong (PDE) form of a boundary value

problem from its variational (weak) form.

This is a purely theoretical problem. ✄ problem code folder: FromWeakToStrongFormOfBVP

On the unit disk Ω := {x ∈ R
2 : ‖x‖ < 1} (with exterior unit normal vector field n : ∂Ω → R

2) we con-

sider the variational problem: seek

u ∈ H1(Ω):
∫

Ω

grad u(x) · grad v(x)dx =
∫

Ω

v(x)dx +
∫

∂Ω

v(x) dS(x) ∀v ∈ H1(Ω) . (0.1.1)

(0-1.a) (2 pts.) Write down the partial differential equation occurring in the strong form of (0.1.1)

= in Ω .

SOLUTION of (0-1.a):

Testing with v ∈ C∞

0 (Ω) and integrating by parts we get

−∆u [= − div grad u = −
∂2u

∂x1
2
−

∂2u

∂x2
2
] = 1 in Ω . (0.1.2)

N

(0-1.b) (3 pts.) State the boundary conditions satisfied by a sufficiently smooth solution u of

(0.1.1).

= on ∂Ω .

SOLUTION of (0-1.b):

Testing with v ∈ C∞(Ω), integrating by parts, and using the PDE (0.1.2) we get

grad u · n = 1 on ∂Ω , (0.1.3)

where n is the exterior unit normal vector field at ∂Ω. In fact, since Ω is the unit disk, we have n(x) = x

for all x ∈ ∂Ω, which allows to express (0.1.3) differently.

N

End Problem 0-1 , 5 pts.

Midterm Exam, April 1, 2019 2

https://gitlab.math.ethz.ch/ralfh/npdecodes/tree/master/homeworks/FromWeakToStrongFormOfBVP

Name: ETH ID No.:

Problem 0-2: Cubic Lagrangian finite element space on 2D hybrid meshes

In [Lecture → Section 2.6] we learned about Lagrangian finite element spaces of piecewise polyno-

mial continuous functions. We saw how the finite element basis functions (global shape functions)

could be constructed as cardinal basis functions belonging to suitable sets of interpolation nodes.

This is a purely theoretical problem. ✄ problem code folder: CubicLagrangianFEM

We consider the cubic Lagrangian finite element space S0
3 (M) on a 2D hybrid mesh M. The local

interpolation nodes for S0
3 (M) on a triangle and a quadrilateral are drawn in Fig. 1 (left figure) for

triangular cells and in Fig. 2 (right figure) for quadrilateral cells, respectively:

Fig. 1 Fig. 2

(0-2.a) (4 pts.) Complete the following LEHRFEM++-based C++ code for the initialization of a

lf::assemble::DofHandler-type appropriate for S0
3 (M) on a 2D hybrid mesh.

HINT 1 for (0-2.a): The constructor of lf::assemble::UniformFEDofHandler has to be given infor-

mation about how many finite element basis function are associated with each type of entity. y

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), },

{lf::base::RefEl::kSegment(), },

{lf::base::RefEl::kTria(), },

{lf::base::RefEl::kQuad(), }});

SOLUTION of (0-2.a):

From the number of interpolation points in the interior of the respective entities we can read off the

number of global/local shape functions associated with them:

lf::assemble::UniformFEDofHandler dof_handler(

mesh_p, {{lf::base::RefEl::kPoint(), 1},

{lf::base::RefEl::kSegment(), 2},

{lf::base::RefEl::kTria(), 1},

{lf::base::RefEl::kQuad(), 4}});

Midterm Exam, April 1, 2019 3

https://gitlab.math.ethz.ch/ralfh/npdecodes/tree/master/homeworks/CubicLagrangianFEM
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_uniform_f_e_dof_handler.html

Name: ETH ID No.:

N

(0-2.b) (2 pts.) Give a formula for dimS0
3 (M) in terms of the numbers NV , NE, NT, and NQ

of NODEs, EDGEs, TRIAs, and QUADs of a 2D hybrid mesh M:

dimS0
3 (M) = .

SOLUTION of (0-2.b):

We just have to add up the number of global shape functions associated with the respective entity

types:

dimS0
3 (M) = NV + 2NE + NT + 4NQ .

N

End Problem 0-2 , 6 pts.

Midterm Exam, April 1, 2019 4

Name: ETH ID No.:

Problem 0-3: Operating locally on Galerkin matrices

In this problem we connect assembly with local operations on Galerkin matrices.

A purely theoretical problem based on the material of [Lecture → Section 2.7.4] ✄ problem code

folder: GalerkinMatVecMult

We examine the following LEHRFEM++-based C++ function:

C++11 code 0.3.1: A function for a local operation of Galerkin matrices

1 template <typename SCALAR, typename ENTITY_MATRIX_PROVIDER>

2 SCALAR multVecAssMat (l f : : assemble : : dim_t codim ,

3 const l f : : assemble : : DofHandler &dofh ,

4 ENTITY_MATRIX_PROVIDER &en t i t y _m a t r i x _p rov i de r ,

5 Eigen : : Matrix <SCALAR, Eigen : : Dynamic , 1> &vec) {

6 LF_ASSERT_MSG(dofh . NoDofs () == vec . size () ,

7 "NoDof mismatch " << dofh . NoDofs () << " <−> " << vec . size ()) ;

8 auto mesh = dofh . Mesh () ;

9 SCALAR s { } ;

10 for (const l f : : mesh : : E n t i t y & e n t i t y : mesh−>E n t i t i e s (codim)) {

11 i f (en t i t y _m a t r i x _p r o v i d e r . isActive (e n t i t y)) {

12 const l f : : assemble : : s ize_type elmat_dim = dofh . NoLocalDofs (e n t i t y) ;

13 l f : : base : : RandomAccessRange<const gdof_ idx_t > g loba l_ idx (

14 dofh . GlobalDof Ind ices (e n t i t y)) ;

15 const auto elem_mat { en t i t y _m a t r i x _p r o v i d e r . Eval (e n t i t y) } ;

16 Eigen : : Matrix <SCALAR, Eigen : : Dynamic , 1> locvec (elmat_dim) ;

17 for (i n t l = 0; l < elmat_dim ; ++ l) {

18 locvec [l] = vec [g loba l_ idx [l]] ;

19 }

20 s += locvec . dot (elem_mat ∗ locvec) ;

21 }

22 }

23 return s ;

24 }

The argument dofh passes a lf::assemble::DofHandler object providing information about the mesh

and the local-to-global index mapping for the finite element space. The other argument vec contains a

finite element basis expansion coefficient vector.

(0-3.a) (6 pts.) Supplement Line 11 of the code of the following C++ function so that it can be

used as a unit test for assembly in LEHRFEM++:

C++11 code 0.3.2: Auxiliary function for unit testing assembly in LEHRFEM++

1 void testAssembly (const l f : : mesh : : Mesh &mesh ,

2 const l f : : assemble : : DofHandler &dof_handler) {

3 const l f : : assemble : : s ize_type N_dofs (dof_handler . NoDofs ()) ;

4 Eigen : : VectorXd vec = Eigen : : VectorXd : : Random(N_dofs) ;

5 // Create object compliant with ENTITY_MATRIX_PROVIDER
6 T es t E n t i t y M a t r i x P rov i de r assembler {mesh } ;

7 l f : : assemble : : COOMatrix<double> mat (N_dofs , N_dofs) ;

8 mat = l f : : assemble : : AssembleMatrixLocally < l f : : assemble : : COOMatrix<double>>(

9 0 , dof_handler , assembler) ;

10 Eigen : : SparseMatrix <double> A = mat . makeSparse () ;

11 double s1 = ;

12 double s2 = multVecAssMat<double , decltype (assembler) >(0 , dof_handler ,

Midterm Exam, April 1, 2019 5

https://gitlab.math.ethz.ch/ralfh/npdecodes/tree/master/homeworks/GalerkinMatVecMult
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html

Name: ETH ID No.:

13 assembler , vec) ;

14 EXPECT_NEAR(s1 , s2 , 1.0E−9) ;

15 }

SOLUTION of (0-3.a):

The function multVecAssMat() multiplies the square finite element Galerkin matrix A encoded by

dofh and entity_matrix_provider with the vector~ν passed in vec from left and right:

multVecAssMat(...) = ~ν
⊤A~ν .

Hence the missing line can be

double s1 = vec.dot(A * vec);

or (because we compute in R)

double s1 = vec.transpose()*A * vec;

N

End Problem 0-3 , 6 pts.

Midterm Exam, April 1, 2019 6

Name: ETH ID No.:

Problem 0-4: Linear finite element Galerkin discretization of 1D transport equation

This exercise practises the computation of local element matrices and global Galerkin matrices for

linear Lagrangian finite elements in 1D, for a “non-standard” bilinear form, however.

This is a purely theoretical problem related to [Lecture → Section 2.3] and [Lecture → Sec-

tion 2.5.3].

We consider the bilinear form

b(u, v) :=

1
∫

0

du

dx
(x) v(x)dx , u, v ∈ H1(]0, 1[) , (0.4.1)

and its Galerkin finite element discretization based on the space S0
1
(M) of M-piecewise linear continu-

ous functions on an equidistant mesh M of]0, 1[with M cells, M ∈ N.

The standard finite element basis functions (“tent

functions”) are used.

The basis functions of S0
1
(M) in 1D ✄

(The basis function associated with x3 is highlighted.)

Fig. 30 = x0 1 = xM
x1 x2 x3 · · · xM−1

1

(0-4.a) (4 pts.) Compute the entries of the element matrix BK for the cell K :=]0, 1/M[of the

mesh and write their values in the boxes:

BK =

















.

SOLUTION of (0-4.a):

The element matrices are the same for all cells of the mesh. On K :=]0, h[, h := M−1, the local shape

functions are

b1
K(x) = 1 −

x

h
, b2

K(x) =
x

h
.

Their derivatives are constant:

db1
K

dx
(x) = −

1

h
,

db2
K

dx
(x) =

1

h
.

The element matrix is given by

BK





h
∫

0

db
j
K

dx
(x)bi

K(x)





2

i,j=1

=

[

− 1
2

1
2

− 1
2

1
2

]

,

by direct computation. The row sums of the element matrix must vanish, because b(x 7→ 1, v) = 0 for

all v ∈ H1(]0, 1[).

N

Midterm Exam, April 1, 2019 7

Name: ETH ID No.:

(0-4.b) (4 pts.) For M = 3 write down the full S0
1
(M)-Galerkin matrix B for b(·, ·) by filling the

boxes:

B =





















































.

SOLUTION of (0-4.b):

By direct assembly from the element matrices, which are the same for all the cells:

A =









− 1
2

1
2

0 0

− 1
2

0 1
2

0

0 − 1
2

0 1
2

0 0 − 1
2

1
2









.

Note that all row sums must vanish. Moreover, the zero off-diagonal entries correspond to cases where

the supports of the tent functions have no overlap.

N

End Problem 0-4 , 8 pts.

Midterm Exam, April 1, 2019 8

Name: ETH ID No.:

Scratch space (will not be evaluated)

Midterm Exam, April 1, 2019 9

Name: ETH ID No.:

Scratch space (will not be evaluated)

Midterm Exam, April 1, 2019 10

	Problem 0-1: Deducing the strong form of second-order elliptic boundary value problem
	Problem 0-2: Cubic Lagrangian finite element space on 2D hybrid meshes
	Problem 0-3: Operating locally on Galerkin matrices
	Problem 0-4: Linear finite element Galerkin discretization of 1D transport equation

