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Problem 0-1: Deducing the strong form of second-order elliptic boundary value problem

In [Lecture — Section 1.5] we have seen how to extract the strong (PDE) form of a boundary value
problem from its variational (weak) form.

This is a purely theoretical problem. > problem code folder: FromWeakToStrongFormOfBVP

On the unit disk Q) := {x € R?: ||x|| < 1} (with exterior unit normal vector field n : 9Q) — IR?) we con-
sider the variational problem: seek

ue H(Q): /Qgradu(x)-gradv(x) dx = /Qv(x) dx + aQv(x) dS(x) Yo e HY(Q). (0.1.1)

(0-1.a) (J(2pts.) Write down the partial differential equation occurring in the strong form of (0.1.1)

= in Q).

SOLUTION of (0-1.a):

Testing with v € C§°(€)) and integrating by parts we get

02 02
—Au[:—divgradu:—ﬁflz—ﬁzuz]:l in Q. (0.1.2)
A
(0-1.b) (I (3 pts.) State the boundary conditions satisfied by a sufficiently smooth solution u of
(0.1.1).
= on 0dQ).

SOLUTION of (0-1.b):

Testing with v € C* (ﬁ), integrating by parts, and using the PDE (0.1.2) we get
gradu-n=1 on 0Q), (0.1.3)

where n is the exterior unit normal vector field at dQ). In fact, since () is the unit disk, we have n(x) = x
for all x € (), which allows to express (0.1.3) differently.

A

End Problem 0-1, 5 pts.
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https://gitlab.math.ethz.ch/ralfh/npdecodes/tree/master/homeworks/FromWeakToStrongFormOfBVP
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Problem 0-2: Cubic Lagrangian finite element space on 2D hybrid meshes

In [Lecture — Section 2.6] we learned about Lagrangian finite element spaces of piecewise polyno-
mial continuous functions. We saw how the finite element basis functions (global shape functions)
could be constructed as cardinal basis functions belonging to suitable sets of interpolation nodes.

This is a purely theoretical problem. > problem code folder: CubicLagrangianFEM

We consider the cubic Lagrangian finite element space SQ(M) on a 2D hybrid mesh M. The local
interpolation nodes for Sg(/\/l) on a triangle and a quadrilateral are drawn in Fig. 1 (left figure) for
triangular cells and in Fig. 2 (right figure) for quadrilateral cells, respectively:

o @ @ ®

o o o ([

[ (] (] (]
Fig. 1 Fio2 '@ ® O ®
(0-2.a) (I (4 pts.) Complete the following LEHRFEM++-based C++ code for the initialization of a

If::assemble::DofHandler-type appropriate for SJ (M) on a 2D hybrid mesh.

HINT 1 for (0-2.3): The constructor of If::assemble::UniformFEDofHandler has to be given infor-

mation about how many finite element basis function are associated with each type of entity. J
1f::assemble: :UniformFEDofHandler dof handler (
mesh_p, {{lf::base::RefEl::kPoint (), }y,
{1f::base::RefEl: :kSegment (), b,
{1f::base::RefEl::kTrial(), b,
{1f::base::RefEl::kQuad(), P

SOLUTION of (0-2.a):

From the number of interpolation points in the interior of the respective entities we can read off the
number of global/local shape functions associated with them:

1f::assemble: :UniformFEDofHandler dof_ handler (
mesh_p, {{1lf::base::RefEl::kPoint (), 1},
{1f::base::RefEl::kSegment (), 2},
{1f::base::RefEl::kTria(), 1},
{1f::base::RefEl::kQuad(), 41}});
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https://gitlab.math.ethz.ch/ralfh/npdecodes/tree/master/homeworks/CubicLagrangianFEM
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_uniform_f_e_dof_handler.html
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A

(0-2.b) [J(2pts.) Give a formula for dim SQ(M) in terms of the numbers Ny, Ng, N, and Ng
of NODEs, EDGEs, TRIAs, and QUADs of a 2D hybrid mesh M:

dim SY(M) =

SOLUTION of (0-2.b):

We just have to add up the number of global shape functions associated with the respective entity
types:

dim S§(M) = Ny + 2Ng + Ny +4Nj .

A

End Problem 0-2, 6 pts.
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Problem 0-3: Operating locally on Galerkin matrices

In this problem we connect assembly with local operations on Galerkin matrices.

A purely theoretical problem based on the material of [Lecture — Section 2.7.4] > problem code
folder: GalerkinMatVecMult

We examine the following LEHRFEM++-based C++ function:

C++11 code 0.3.1: A function for a local operation of Galerkin matrices

1 |template <typename SCALAR, typename ENTITY_MATRIX_PROVIDER>

> |SCALAR multVecAssMat( If ::assemble ::dim_t codim,

3 const If ::assemble :: DofHandler &dofh,

4 ENTITY_MATRIX PROVIDER &entity_matrix_provider ,
5 Eigen:: Matrix<SCALAR, Eigen::Dynamic, 1> &vec) {
6 LF_ASSERT_MSG(dofh .NoDofs () == vec.size (),

7 "NoDof mismatch " << dofh.NoDofs() << " <—> " << vec.size());
8 auto mesh = dofh.Mesh () ;

9 SCALAR s {};

10 for (const If::mesh:: Entity &entity : mesh—>Entities (codim)) {

1 if (entity_matrix_provider .isActive (entity)) {

12 const If ::assemble ::size_type elmat_dim = dofh.NolLocalDofs(entity);
13 If ::base ::RandomAccessRange<const gdof_idx_t> global_idx (

14 dofh . GlobalDoflndices (entity)) ;

15 const auto elem_mat{entity_matrix_provider .Eval (entity) };

16 Eigen:: Matrix<SCALAR, Eigen::Dynamic, 1> locvec (elmat_dim);

17 for (int | = 0; | < elmat_dim; ++I) {

18 locvec[l] = vec[global_idx[I]];

19 }

20 s += locvec.dot(elem_mat * locvec);

21 }

22 }

23 return s;

24 |}

The argument dofh passes a If::assemble::DofHandler object providing information about the mesh
and the local-to-global index mapping for the finite element space. The other argument vec contains a
finite element basis expansion coefficient vector.

(0-3.a) EJ (6 pts.) Supplement Line 11 of the code of the following C++ function so that it can be
used as a unit test for assembly in LEHRFEM++:

C++11 code 0.3.2: Auxiliary function for unit testing assembly in LEHRFEM++

void testAssembly (const |f ::mesh::Mesh &mesh,

;
2 const |f ::assemble :: DofHandler &dof_handler) {

3 const If ::assemble ::size_type N_dofs(dof_handler .NoDofs()) ;

4 Eigen:: VectorXd vec = Eigen::VectorXd ::Random(N_dofs) ;

5 // Create object compliant with ENTITY_MATRIX_PROVIDER

6 TestEntityMatrixProvider assembler{mesh};

7 If ::assemble :: COOMatrix<double> mat(N_dofs, N_dofs) ;

8 mat = |f ::assemble :: AssembleMatrixLocally<If ::assemble :: COOMatrix<double >>(

9 0, dof_handler, assembler);

10 Eigen::SparseMatrix<double> A = mat. makeSparse () ;

11 | double s1 = ; |

12 | double s2 = multVecAssMat<double, decltype (assembler)>(0, dof_handler, |
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https://craffael.github.io/lehrfempp/classlf_1_1assemble_1_1_dof_handler.html
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13 assembler, vec);
14 EXPECT_NEAR(s1, s2, 1.0E—9);
15 |}

SOLUTION of (0-3.a):

The function multvVecAssMat () multiplies the square finite element Galerkin matrix A encoded by
dofh and entity_matrix_provider with the vector ¥ passed in vec from left and right:

multVecAssMat (...) = vAT .

Hence the missing line can be

double sl = vec.dot (A x vec);

or (because we compute in IR)

double sl = vec.transpose()*xA * vec;

A

End Problem 0-3, 6 pts.
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Problem 0-4: Linear finite element Galerkin discretization of 1D transport equation

This exercise practises the computation of local element matrices and global Galerkin matrices for
linear Lagrangian finite elements in 1D, for a “non-standard” bilinear form, however.

This is a purely theoretical problem related to [Lecture — Section 2.3] and [Lecture — Sec-
tion 2.5.3].

We consider the bilinear form
1.

b(u,v) := / d
0

and its Galerkin finite element discretization based on the space S (M) of M-piecewise linear continu-
ous functions on an equidistant mesh M of |0, 1] with M cells, M € IN.

E

(x)ov(x)dx, wu,ve€ HY(]0,1]), (0.4.1)

Q.

X

The standard finite element basis functions (“tent

functions”) are used. 1-
The basis functions of SY(M) in 1D >
(The basis function associated with x3 is highlighted.) | |
| T T | 1
70 = x X1 X2 X3 IM-1 1 =xpy
(0-4.a) (I (4 pts)) Compute the entries of the element matrix By for the cell K :=]0,1/m][ of the

mesh and write their values in the boxes:

By =

SOLUTION of (0-4.a):

The element matrices are the same for all cells of the mesh. On K :=]0, h[, h := M~ the local shape
functions are

X X
Their derivatives are constant:
db}< 1 dbi 1
W= m W=y
The element matrix is given by
h .
- dv/ . _1
Be| [ Gk = |77
. 2
0 i,j=1

N[N —=
| I
~

by direct computation. The row sums of the element matrix must vanish, because b(x — 1,v) = 0 for
allv € H'(]0,1]).
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(0-4.b) (4 pts.)

For M = 3 write down the full S{(M )-Galerkin matrix B for b(-, -) by filling the
boxes:

SOLUTION of (0-4.b):

By direct assembly from the element matrices, which are the same for all the cells:

1 1
“I o 1o
A=2121
o o i
0 0 —3 3

Note that all row sums must vanish. Moreover, the zero off-diagonal entries correspond to cases where
the supports of the tent functions have no overlap.

A

End Problem 0-4, 8 pts.

Midterm Exam, April 1, 2019



Name: ETH ID No.:

Scratch space (will not be evaluated)
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Scratch space (will not be evaluated)
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