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(2D membrane] U, = argmin %a(x)”grad u(x)||2 — f(x)u(x)dx (1.2.3.1b)
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Prerequisites. 1> j X

¢ Linear and hilinear forms,
¢ Norms and inner products, -

Definition 1.2.3.2. Quadratic functional

o Multi-dimensional integrals, [Lecture — Section 0.1.2.5] A quadratic functional on a real vector space Vy is a mapping ] : Vo +— R of the form
Dependency. Depends mildly on unit for [Lecture — Section 1.2.1] and [Lecture — Section 1.2.2]. () = o) — by +c, € Vo, 1259
Note: Possible minor mismatch of video and tablet notes! where a : Vp x Vo — R is a symmetric BilGaFfof(—s Def. 0.1.1.7), £ : Vo — R a linearform)

A [Corrections and updates can be incorporated into tablet notes only] andc € R.
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Definition 1.2.3.1].. Quadratic minimization problem

A minimization problem

ws = argmin [(w)
weV

is called a quadratic minimization problem, if | is a quadratic functional on a real vector space V.
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Definition 1.2.3.30. Positive definite bilinear form — Def.

A (symmetric) bilinear form a : Vj X V — IR on a real vector space Vj is positive definite, if

ue W\{0} <= a(u,u)>0.
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Theorem 1.2.3.3/. Uniqueness of solutions of quadratic minimization problems

If the bilinear form a : Vy x Vy — IR is positive definite (— Def. 1.2.3.30), then any solution of

. = argmin J(u) , J(u) = 3a(u,u) —£(u) +c,
ueVp

is unique for any linear form ¢ : Vy — IR.
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Definition 1.2.3.35. Energy norm, cf.

Let a the symmetric positive definite bilinear form a : Vj X Vy +— IR (— Def. 0.1.1.21) underlying a
quadratic functional J. Then the related energy norm is

lull, := (a(uw, u))"?, ueVp.
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Lemma 1.2.3.35. Boundedness condition on linear form

= gw(a = 0
= L = copct
= =/

The quadratic functional | (— Def. 1.2.3.2) based on a symmetric positive definite bilinear form a
(— Def. 1.2.3.30) is bounded from below on V}y, if and only if

AC > 0: [l(u)| < C|lu||, YuecVy |,

(1.2.3.40)

(1 2 where |||, is the energy norm induced by a, see Def. 1.2.3.38. J/
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Uy = argmm/o—a(x)ﬂgrad u(x)||2 dx —u(y) . (1.2.3.46)

ueChy (@) S~~~
u qonaﬂ e =:€(l)

= ; (u,u) l
/, = CP/W, () W”j culation buchimed

e(x) = {logllognxn/ it x| > e, 5
77 lloglloge| Lif x| <€,
6 Vﬂ 1

on the disk domain Q) = {x € R% ||x| < 1}.05

v, W&M&% 5}//7%713&

[vly by kgt LM%

(1.2.3.51
Wé(/a/m/ vy
1/e 27 1/e 1 1
|vel|? = /||gradv( )[|* dx = // logrrer rd(pdr< Zn/logzr.7dr
Q 0
1/e 27T
— 27‘[[—1/10gr]o — @ = 27T< 0 .

Well s =
/[7/5) - v, (0) = (%//%5//>wz§w£>a

mm@% % i v, 1277 2
[ s volakd |

.




Y Revew qaesh'ons .7.3.50 D

A For what values of «, B,y € IR does the quadratic functional
' X

Let V be a real vector space. Give the formal mathematical definitions of the following concepts: J: R> 5 R , J(x) = x' lo O] X—yx1+a,
of a linear form £ on V, ﬁ

of a bilinear formaon V,

of a positive definite bilinar form a on V,
and of a quadratic functional on V.

pPOSSESS a unique minimizer.

B - What is the energy norm induced by a symmetric positive definite bilinear form on a vector space V7
The electrostatic field energy

Je(u) := /%(e(x) grad u(x)) - grad u(x) dx . - -

0
. ' _ . o _ . B ' What does it mean that a linear functional £ on a vector space V} is bounded/continuous with respect to a
is @ quadratic functional. On which space is it defined and what are the involved bilinear form and linear | nom ||| on Vo?

form according to the abstract definition of a quadratic functional?

C:

The general form a quadratic functional on RN, N € IN, is

&

Show that every linear functional on Vy := R? is bounded with respect to the Euclidean norm on R2.

—‘T - )
JG) =47 AGj—B fi+c , A=AT eRVN, BeRY, ceR. (1.2.3.6) \’7[ .
Rephrase the following statement in formal mathematical terms:
Point evaluation is an unbounded linear functional on C'([0,1]?) with respect to the energy

norm
foll == ( /,

Write down the matrix A, the vector B and the number ¢ concretely for the quadratic functional

xeR?— x> = (x1—1).
1
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lgrado(x)|*dx)
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