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13. 5 Spaces
Section 1.3: Sobolev Spaces obolev ]m

We will also need the following spaces (see [19]):

Vo = Hyr, (mlr]u;ﬂ) = {Q € T/" curl 1 = 0} 3)

Hor, (4", 9,6) = {v e I (@)° | divev = 0,0 nf;, =0}

Hy = e tenrl (Ho r, (curl, Q) C Hyp, (div?, 2, €) 5
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We will indicate by | ||y (, the norm in A corresponding to (1, )g s bY (5 )ouri @0d | [|eye ) the standard inner
product and norm in /1 (curl, 2), respectively, and by || |, o, 0 < s < 1, the natural norm in J1*(£2) or 1£*(2)%.
For s = 1 we will also use the natural seminorm | (16]. Finally, we define the following inner products and
norms in H end V:

Prerequisites. Exa h’)/?[(/ : 4 ; g 0 4 ‘.

e Norms and inner products, [Lecture — Section 0.1.1.3]
e Quadratic minimization problems, [Lecture — Section 1.2.3] We consider the quadratic functional
e Cauchy-Schwarz inequality, [Lecture — Thm. 0.1.1.25]

1
Y B o1 , 2 ,
Dependency. Depends on units for [Lecture — Section 1.2.3] and [Lecture — Section 1.2.1]. J(u) := /) " (x) —u(x)dx = 2[) {(u(x) —1)"—1}dx,

on Vo - C.((017)
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Assume that u, € Vj is a global minimizer of |
Then

|
08F | |

w(x) := min{1, 2 max{u.(x),0}}
0<x<1,

[
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u(x)

is another function € CJ([0, 1]), which satisfies

(x) #1 = |w(x) —1| < |u.(x) — 1|
= J(w) < J(uy) !
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Choose  “Vj:=

{functions v on (2: a(v,v) < 0o}’

1.3 2. The Function J/(O%LZ LQKEB)

We consider the quadratic functional

Mbn - eiclence #f minimizens A /

o ,
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Guideline:

for a quadratic minimization problem (— Def. 1.2.3.13) with
4+ symmetric positive definite (s.p.d.) bilinear form a

4 alinear form / that is continuous w.rt. ||-||,, see (1.2.3.43),
posed over a function space follow the advice

consider it on the largest space of functions
for which a still makes sense ! “—7
(and which complies with boundary conditions)

J(u) :=

/lluz(r)—u(r)dr—1/1{(11(\7 —1)"—1}dx
300 x)dx =3 | b
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The function space defined in (1.3.2.2) is the space of square-integrable functions on () and denoted
by L2(Q)).

T )2
(Iollo =) el = ([, JocoR ax)

2 + superscript “2”, because square in the definition of norm |-,
% Notation: L (! !)
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It is a normed space with norm
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Definition 1.3.4.3. Sobolev space

The space of integrable functions on () with square integrable gradient that vanish on the boundary
00},

Vo := {v: Q — Rintegrable: v = 0 ona(, / | grad o(x)[*dx < oo}, (1.3.4.2)
0

is the Sobolev space H} () with norm

2 &
) = </Q||gradv|| dx) .

|U|H1(Q

< superscript “1”, because first derivatives occur in norm

+ subscript “0”, because zero on d()

o Notaion: H%GQ)

Ex 1.3.29 /Rem 1344
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Now we pursue a more sophisticated reasoning,
which will finally tell us that fixing the values in 01
x = 0,1 for functions in L?(]0,1[) does not make

sense.

Consider u € C°([0,1]) and try to impose any
boundary values 1,17 € IR by “altering” u in the
following way:

§9:1£?27[

(red parts of the graph belong to ii,,.)

,for0§x§}—1,

1 1
for;<x<1—;,
or1—1 <x<1,

u(x) nelN.

u(x) + (1 —nx)(ug — u(0))
iy(x) =
u(x) —n(1 — ; — x) (1 — u(1))

0(0) =, , U (1) = 4t
lat- a1, //Lzm)”i”;@ J m/él/g > oo



Y Dopping BOC of H, (2]

The Sobolev space
H'(Q) := {v: Q +— R integrable: / | grad v(x)|? dx < oo}
, Ja

is a normed function space with norm

2 2 2
”U”HI(Q) = ||vllo + |U|H'I(Q) .

[ éfgg C/%/y)ng /s ot a homaoy
AMP on H/(52>/H;/§2) ;
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Section 1.2.1.2 . /1 dv
i u, = argmin [ 50(x)|—=(x)| — f(x)v(x)dx 1.3.4.9a
[1D, string] vegm‘“ J 20 ( )dx( )| — f(x)o(x) ( )
v(a)=ug v(b)=up \Q - P
=Js(u), see (1.2.1.18)
Section 1.2.1.2 _ 5
[2D membrane] Uy = argmm/%a(x)”grad U(.’X‘)” —f(X)U(X)dx 7 (1349b)
veHL(O
z-':e;or: 8()1 9 P
:2])\/1(11), see (1.2.1.19)
Section 1.2.2 [
' * = 2 : v(x)dx . 1.3.4.
[2D, 3D electrostatics] . al;%?{‘(‘?/ >(e(x) gradv(x)) - grad v(x) dx (1.3.4.9¢)
vL:Ll onhi)-Q 9 ,

Je(u), ;ge (1.2.2.6)

e\ = H'(2)
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Theorem 1.3.4.17. First Poincaré-Friedrichs inequality
IfQ C RY, d € N, is bounded, then

|ullo < diam(Q) ||grad ul|, Yu € H}(Q).
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@ Corollary 1.3.4.19. Admissible loading/source functions linear 2nd-order elliptic problems

Iff € L2(Q), then £(v) := Jo f(x)v(x)dx is a continuous linear functional on H) Q).

As in Section 1.2.3.4 in this lemma “continuity” has to be read as

3C > 0: [€(u)| < Clu|g, Yu € Hy(Q) (1.2.3.43)

> +e Lg(f?/ = ZMM Y 7MWMM{W

How to “work with” Sobolev spaces

Most concrete results about Sobolev spaces boil down to relationships between their norms. The
spaces themselves remain intangible, but the norms are very concrete and can be computed and
manipulated as demonstrated above.

0 Do not be afraid of Sobolev spaces! \‘

It is only the norms that matter for us, the ‘spaces” are irrelevant!

Obber Informahion CMW b\/ we e )
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Theorem 1.3.4.23. Compatibility conditions
for piecewise smooth functions in H'(Q)

Let () be partitioned into sub-domains ()1 and
()y. A function u th}tis continuously differen-
tiable in the closures’of both sub-domains, be-
longs to H'(Q)), if and only if u is continuous
on Q).
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@ Corollary 1.3.4.26. H'-norm of piecewise smooth functions
Under the assumptions of Thm. 1.3.4.23 we have for a continuous, piecewise smooth function
u e CO(Q)

2 2 2
lultqy = [ulmq,) + [l a,) = /|grad u(x)|?dx + /]grad u(x)>dx.
Ql 9]

£ e C 0/4(2) => Cém/WZE +H f/mm p?ézemke
K

Which of the following functions belong to the spaces L(] — 1,1[) and H'(]0, 1[), respectively?
o f(x) = |x| o f(x)=loglx| e f(x)=sgn(x) f(x)=/P+x

hnd -« Mp //mn/v'rzm‘§ 7 L?Q)
. Checte Pnde 40%




Y Review questons  1.3.4.27
A

Which of the following functions belong to the spaces L*(] — 1,1[) and H'(]0, 1[), respectively?

Explain the statement
For bounded domains Q) C IR¥ the restriction of functions to the bounda. ry Q) makes sense

in H'(Q)
in terms of H'(Q))-norms of functions.

[ :

Show that the point evaluation v — (%) is an unbounded linear: functional on L2(]0, 1[).

Nol—=

For a bounded domain ) C IR?, d = 1,2, which of the spaces Cp, (Q), Chy (Q), and C3,(Q) isfis not
contained in L2(Q)) and H'(Q)), respectively?

=

Let Q C IR? be a bounded domain. Define the Sobolev space fitting the quadratic minimization problen
for the functional

Jv) i= [ |dive() + [v[*dx, v = (C'@)2.

=

Which Sobolev space, call it W, fits minimization problems for the functional
2 —
J(v) := /|d -grad ul+u*dx, veC®(Q),
JO

where d € R? is a fixed unit vector, and Q) =10, 1[2.
e Give an example of a function belonging to W, but not to H'(Q)).
e Show that H'(Q) Cc W.

A\

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.



