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Section 1.4: Linear Variational Problems
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e Quadratic minimization problems, [Lecture — Section 1.2.3]
o Differential operators grad and div

e Multi-dimensional integration, [Lecture — Section 0.1.2.5]
Dependency. Depends on units for [Lecture — Section 1.2.3] and [Lecture — Section 1.3]

C Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Definition 1.4.1.6. (Generalized) Linear variational problem (LVP)

With V' a vector space, V C V an affine space, and V; C V the associated subspace the equation

{11617: a(u,v) =4(v) YoeV, |,
. | |

(1.4.1.7)

is called a (generalized) linear variational problem, if
e a: V x Vy— Ris abilinear form, that is, linear in both arguments (— Def. 0.1.1.7),
e and / : Vy — R is a linear form (— Def. 0.1.1.5).
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Theorem 1.4.1.8. Equivalence of quadratic minimization problem and linear variational prob-
lem

For a (generalized) quadratic functional | (v) = % (v,v) — ¢(v) + c on a vector space V and with
a symmetric positive definite bilinear forma : V x V — IR are equivalent:

(i) The quadratic minimization problem for | has unique minimizeri.. < V over the affine sub-
spaceV =g+ Vp, g € V.
(i) The linear variational problem

ueV: a(u,0) =Lv) YoeV,

has & unique solution i, < V.
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A generic second-order linear elliptic Dirichlet problem () in variational form seeks

ue HY(Q),

U = ¢ on aQ (a(x) rad ”(x)) ’ grad U(x> dx = /f(x)v(x) dx Vo € 11(]) ((2) . (1 424)
fa : Q) — R
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State the linear variational problem equivalent to the minimization of

J'RZSR , J(x) = |x]P+x1+x+1.

C

Let V be a vector space, a: V x V — IR a symmetric positive definite bilinear foormand /: V — R a
linear form bounded w.r.t. to the energy norm ||-||, induced by a(c;-). Assuming that the quadratic func-
tional

J(v) := %a(v, v)—L(v)+c, veEV, (1.2.3.3)

has a minimizer, what is the minimal value of | expressed
e interms of ||u||,, or
e interms of /(u),

where u € V satisfies

a(u,v) =4L(v) YveV.
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For a bounded domain () C IR? consider the second-order linear elliptic Dirichlet problem
ue H&(Q): /(a(x) grad u(x)) - grad v(x) dx = /f(x)v(x)dx Yo e H(%(Q) .
o) 0

with uniformly positive definite & : QO — R>2,
1. For what source functions f will the right-hand side functional still be continuous on H&(Q)? (Give
a reasonably general sufficient condition.)
2. Let u € H}(Q) be the solution of the above variational problem. For which norms introduced in

Section 1.3 (L0 € {H'(Q), L?(Q)) }) does the estimate

lulla < Cliflio

hold with a constant C > 0 independent of f?

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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