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Prerequisites.
e Quadratic minimization problems, [Lecture — Section 1.2.3]
e Linear variational problems, [Lecture — Section 1.4]
¢ Multi-dimensional integration, [Lecture — Section 0.1.2.5] and

Dependency. Depends on units for [Lecture — Section 1.2.3] and [Lecture — Section 1.4]. Sobolev

spaces from [Lecture — Section 1.3] will be used.

C Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Theorem 1.5.2.4. Gauss’ theorem —
Withn : 9Q) — IR? denoting the exterior unit normal vectorfield on dQ) and d S indicating integration
over a surface, we have

x)dS(x) v, € (Cpw(2))?. (1.5.2.5)
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Lemma 1.5.2.1. General product rule

Forallj € (C1(Q0)), v € C1(Q) holds

div(jv) = v divj+j- grad v in every point of () . (1.5.2.2)
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Theorem 1.5.2.7- Green’s first formula

For all vector fields j € (Cp(Q2))? and functions v € C},(Q) holds

j-gradody = — [ divjodx+ [ j-nods. 15.2.
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Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions

If f € L2(Q)) satisfies

./of(x)v(x) dx =0 YveCP(Q),

then f = 0 can be concluded.

> M%ﬁ/(d&)j/w/%) = ) 1w 52

A PDE
+ BDC :f—% on 952 = Dint EPP
Remartc weik G shong vy,
Minimization problem Variational problem BVP fovr PDE (1.5.3.8)
(1.4.2) (1.4.2.4)
Lu=fin(Q,
u, = argmin J(v) a(u,v) = £(v) Vo Uyn =g -

veV

V ex vz JO"F hiness v MZ[
v it ST



0 Gy ' . ) mblz
193 Exrsion < Tty et monhane |y i)t flogadede)o ds = (7
- 2 J?

&\TZ ‘?)/77 = O
ﬂﬁgum/ﬁ/’fé//) f u & @pi (R),o0-e épfw (9—'5)

.3 Trck @ FEiot lest writh e CD{ (5?) c \/&
L > [ (divloguda) 0 wolx = 0
Y

— —— : prescribed boundary values here (I'p)

u(x)

——: “free boundary” (gap of frame)

A ' o 1
B> Configuration space V:={uc H(Q): ur, =gt — Def 1.3.4.8
The expression for the total potential energy remains the same as in (1.2.1.19): E—— . .
Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions
If f € L2(Q) satisfies
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When removing pinning conditions on dQ) \ Ty the equilibrium conditions imply the (homogeneous)
Neumann boundary conditions (o(x) grad u(x)) - n(x) = 0on 9Q \ T.

e

Boundary value problem for membrane clamped at I'y C 9Q)

=

u=g onlp,

—div(o(x)gradu) = f inQ), 0 ondQ\Ty.

(o(x)gradu)-n (1.5.3.1§)
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Lemma 1.5.3.16. Fundamental lemma of calculus of variations on boundaries
Let QO C IR? be a bounded domain with piecewise smooth boundary and Ty C 9Q) a part of 9Q)
with non-zero measure. If g € C°(9Q)) satisfies

/ 2(x)o(x)dS(x) =0 Yo € C®(QY),

s

then g vanishes on T'y: g|p = 0.
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State Gauss’ theorem for a vector field j € (C'(Q)))“ on

B

What is meant by the weak form and the strong form of an elliptic boundary value problem?

What 2-point boundary value problem corresponds to the variational problem

b
u, € H(Ja,b)), ﬂ( )dv
u(a) = uy, u(b) = uy dx 7 dx
a

U:

State the 2-point boundary value problem satisfied by the solution of the variational equation

du dov

v H0AD: [+ 5 () (o)~ () =

b
x——uy+ﬂﬂwmdp:/ﬂmdﬂdxVUEHMMHL

a domain Q) c RY.

v(0) Yo € H'(]0,1]) .

=

Give an example for a linear variational problem on Hé(]O,l[) with continuous and s.p.d. bilinear form
and continuous right-hand side linear form whose solution will not be the solution of a two-point boundary
value problem in the sense of classical calculus.

State the boundary value problem satisfied by the solution of the following variational problen

HY (O
ue H (Q), Ju Jv +28u 9v dx =0 VUEH(I)(Q).

: X
u = g on dQ) J dx1 oxq X7 0X2

c

For a bounded domain Q) C RR? state the second-order elliptic boundary value problem associated with
the linear variational problem

u e HY(Q): /Q grad u(x) - grad v(x) dx = /Qv(x) dx + /()Q o(x)dS(x) Yo e H(Q).

i

We consider the variational problem

u:Q— R%: /Q divu(x)divv(x) +u(x) -v(x)dx = /v(x) n(x)dx Yv:Q — R?.
' a0

What is a suitable Sobolev space and what boundary value problem is satisfied by the vector field u?
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I
Which boundary value problem does the minimizer of the functional
Jdu du 2
J(©) = [ |5 (x) = 5=(x)| + P = |xu@)dx, oeH)Q),
axl aXZ

Q

solve? Here, Q) C IR?is a bounded domain.




