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Section 1.8: Second-Order Elliptic Variational
Problems
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(C) Seminar flr Angewandte Mathematik, ETH Zirich

Prerequisites.
e Multi-dimensional integration, [Lecture — Section 0.1.2.5] and
e Multi-dimensional integration by parts, [Lecture — Section 1.5.2]
Dependency. Depends on units on [Lecture — Section 1.6] and [Lecture — Section 1.7]

C Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Formal transition from boundary value problem for PDE to variational problem

STEP 1: test PDE with smooth functions

(do not test, where the solution is known, e.g., on the boundary)
STEP 2: integrate over domain
SIEPS: perform integration by parts
(e.g. by using Green'’s first formula, Thm. 1.5.2.6)
STEP 4:  [optional| incorporate boundary conditions into boundary terms
STEP 5: Choose suitable function spaces (Sobolev spaces)
(Section 1.3.1: largest function space on which variational problem well posed)
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K(x)gradu-gradvdx:/ﬂfvdx Yo € Hy(Q) .

(1.8.0.5)
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BVP: —div(x(x) grad u) —k(x)gradu-n=Y(u) ondQ). (1.8.0.7)

STEP 1 &2:

Ujg not fixed = testwith v € C®(Q) [

B /CllV x) grad u) v t—/fvdt Yo € C*(Q).

STEP 3 & 4: STEP 3 & 4: apply Green’s first formula (1.5.2.7) and incorporate boundary conditions:
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/~ Variational formulation of (1.8.0.7): seek

x)grad u - gradvdx — / K(x)gradu-nvd5=/fvdx Yo € C®(Q)) .
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u € H'(Q): / k(x)grad u - gradudx+/ (u) vdS = / fodx Yoe HY(Q). (1.8.0.8)
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—div(x(x) gradu) = f in(Q},
k(x)grad u-n=h(x) ondQ).
Ls um’%my@ paﬁ/’f%

The prviovs BUP witty Hlu] =

/~ Variational formulation of (1.8.0.7): seek

BVP: (1.8.0.11)

~-h

‘ u € H(Q): /Qx(x)gradu~gradvdx+ /aQ‘P(u)vdS = /vadx Yo € HY(Q) . (1.8.0.8)
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Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality
IfQ c R, d € N, is bounded, then

IC=C(Q) >0: ||ull, <C diam(Q)||grad ul|, Vu € HI(Q) .
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> Uniquely solvable variational formulation of Neumann problem:

hvdS Yove H(Q).
JoQ)

ue€ H(Q): /K(x) grad u - grad vdx = / fodx+ (1.8.0.16)
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Review question(s) 1.8.0.22(Elliptic variational problems)
(Q1.8.0.31.A) What is the meaning and relationship of classical and weak solutions of 2nd-order elliptic

boundary value problems?
(Q1.8.0.3l..B) State the linear variational equation and the corresponding quadratic minimization problem

related to the second-order linear elliptic boundary value problem

—div(ﬁ ;]gradu)+u=0 in QCR?> , u=1 on 9Q).

(Q1.8.0.3:.C) Which linear variational problem gives the weak form of the boundary value problem

—gradu-n = u—1 on Iy,

—Ay — : 2
Au=0 in QCR° , U o= 0 on T,

where Q) = Ty U T’y is a partition of the boundary 9Q)?
(Q1.8.0.3].D) Consider the pure Neumann boundary value problem

—div(A(x)gradu) = f in QCR? , Agradu-n=h on 9Q.

State the compatibility conditions on the data f and / that is necessary for existence of weak solutions.
Give a physical interpretation in the context of stationary heat conduction.
(Q1.8.0.3].E) Consider the partial differential equation

graddivu+c(x)u=f inQCR?,

where ¢ : () — IR is a bounded and uniformly positive definite coefficient function. Derive the formal
variational formulations for boundary value problems for this PDE when equipped with the boundary

conditions
1. u-n = 0 on dQ), where n is the exterior unit normal vectorfield on 9Q).

2. divu = 0 on 9.
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