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2 Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Definition 10.1.3.1. Incompressible flow field

A fluid flow is called incompressible, if the associated flow map ®' is volume preserving,

@' (V)| = |®°(V)| = |V| for all sufficiently small t > 0, and for all control volumes V .

V)| = [ 1 dx
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Theorem 10.1.3.7. Differentiation formula for determinants
LetS : I C R — R"™" be a smooth matrix-valued function. IfS(t) is regular for some t, € I, then
d dS _
—(detoS)(to) = det(S(to)) tr(—(t0)S ™ (t0)) ,

where det : R™" — R js the matrix determinant and tr stands for the trace of a matrix.
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Theorem 10.1.3.8. Divergence-free velocity fields for incompressible flows

A stationary fluid flow in QO C R? is incompressible (— Def. 10.1.3.1), if and only if its associated

g o . v; ,
velocity fieldv = [vy, ..., vy " 1 Q — R satisfies divv = 237:1 ;)—f = 0 everywhere in Q).
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—div(k grad u) + div(pv(x)u) = f in Q)

— — +— wusedivv =0

—kAu+pv-gradu = f in Q) (10.1.3.11)
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Rerembar
Theorem 3.7.1.2. Maximum principle for 2nd-order elliptic BVP

Foru € C°(QY) N H(Q) holds the maximum principle

—div(k(x)gradu) >0 = min u(x) = minu(x),

x€0() xe)
—div(x(x)grad u) <0 = maxu(x)= maxu(x).
(k(x) grad u) < max u(x) = maxu(x)

Can be gan@{ﬂ&’zw{ :

Theorem 10.1.3.13. Maximum principle for scalar 2nd-order convection diffusion equations
_>

Letv : Q) +— RY be a continuously differentiable vector field and u € C°(QY) N C%(Q)). Then there
holds the maximum principle

—Au+v-gradu >0 = minu(x)=minu(x),

x€dQ) xeQ)
—Au+v-grad <0 = maxu(x)=maxu(x).
x€d) x€Q)

heat sozorces mdw
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