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§10.20.2  (Vaahona! Lomolabon )

uc HY(Q): € /grad u - grad wdx + /(v-grad u)wdx = /f(t) w(x)dx Yw € HY(Q).
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Notion 10.2.1.9.

A boundary value problem depending on parameter € ~ ¢ is called singularly perturbed, if the limit
problem for € — € is not compatible with the boundary conditions.
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O, Remnk 10.2.1.13  ( Clooed Sheamlines )

For the pure transport problem v - grad u = f Dirichlet boundary conditions can be imposed only on
the inflow boundary part

[in :={x € 9Q: v(x) -n(x) <0} . (10.2.1.11)
but not on its complement in d(), the outflow boundary part
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Notion 10.2.1.9.

A boundary value problem depending on parameter € ~ ¢ is called singularly perturbed, if the limit
problem for € — € is not compatible with the boundary conditions.
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