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Prerequisites.
e Knowledge about composite quadrature rules

Dependencies. [Lecture — Section 10.1.2], [Lecture — Section 2.4|, [Lecture — Section 3.7.2]

Duration: minutes

c Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]

—eAu+v(x)-gradu=f inQ), u=0 ond(). (10.2.0.1)
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Robust discretization in the singular perturbation limit

We desire a robust discretization of (10.20.1)
= discretization that produces qualitatively correct () solutions for any € > 0

(%):

“qualitatively correct”, e.g., satisfaction of maximum principle, Thm. 10.1.3.13]

§ 102214 ( Upwind quaheivie 7 1D)

Conwechon - duflosion pl. BVP s  Lov =17
—eii;lzl Zlé =f(x) inQ, u(0)=0 , u(l1)=0. (10.2.2.1)

1 1
du do /

1
E(x)ﬁ(x)dx+0 B () olx) dx = 0/ fx)o(x)dx Vo€ Hy(J0,1])

. 7 7
-~ ~

=:a(u, =:{(v)
- 8, (M) FE W descienzahon | medwdth h =0
. Convechive Ty - nom. quad . w/ abal qpizd comps (e hapeaoptal wle

u € Hy(]0,1[):

1

1 M-
/0 vydx~h Y (), for e C(0,1]), p(0) = p(1) =0,
1 j=1 ok, sinee w,eCCT0,13)
d M- ldu /
/d_ x)wy, (x ~h )’ E(]h) wy(hj) , wy € S?O(M) (10.2.2.15)
LA
0 dl]mbW? M é\f/ {%/I\ = %‘Zﬁ_ M~P.W~Cﬂl7.§fﬁﬂiq

Follow the Flno ﬂ% in formakon

ldea:
Use upstream/upwind information to evaluate duy —(jh) in (10.2.2.15)
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I lim —(jh—0) = — .
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> Linear system from upwind quadrature:
(—%—1);1, 1+ <I +1>y B l;t,H—lzf(zh) i=1,..., M-—1 (10.2.2.8)
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u € HY(Q): e/grad u - grad w dx + /(v -grad u) wdx = /f(x) w(x)dx Yw € HY(Q).
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bilinear form a(u,w) linear form{ (w)
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/(v-gradu;,)w,,dx% ) (% ) \K\) -v(p) - grad u,(p) wy(p) - (10.2.2.18)
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% notation: U, :={Ke M:p ¢ K}, pe V(M)

Follvw Flow of inlomakon -

Idea:  Use upstream/upwind information to evaluate grad u(p) in (10.2.2.18)

v(p)-grad uy,(p) := %ij?)v(p) -grad u,(p —ov(p)) . (10.2.2.19)

= general upwind quadrature. ( UW& )
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) - grad uy,(p) wy(p) - (10.2.2.18)
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&> Sign conditons  fov deaeke maximom /7/7}7&@/(

4+ (3.7.2.8): positive diagonal entries, (A); >0 |
+ (3.7.2.9): non-positive off-diagonal entries, (A)ij <0,ifi #j |,
4+ %(3.7.2.10)": diagonal dominance, Zj(A),-]- >0

Ex]a 02220 ( Upwz'n&/ Wa/ﬂ?ﬁf@ dwielzabion )

Computational domain: unit square Q) = [0, 1]? J |
—eAu+ (1) -gradu =0 0

Dirichlet boundary conditions: 1(x,y) = 1for x > yand u(x,y) =0forx <y
Limiting case (¢ — 0): u(x,y) = 1forx > yand u(x,y) =0forx <y

layer along the diagonal from ((])) to ((1)) in the limit e — 0

2D triangular Delaunay triangulation, see Rem. 4.2.2.3

linear finite element upwind quadrature discretization
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upwind quadrature solution
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standard Galerkin solution
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