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Upwinding = /h-dependent enhancement of diffusive term
(This is widely known as artificial diffusion/viscosity)
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Here, the Dirichlet data are g(x) = 1 — 2|x, — 3| (“roof function”).
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(Too much) artificial diffusion > smearing of internal layers

(We are no longer solving the right problem!)

Heuristics of streamline upwinding [ SU )

Since the solution is smooth along streamlines, then adding diffusion in the direction of streamlines
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ldea: Anisotropic artificial diffusion in streamline direction

OncellK replace: € + el +dgvgvy € R*%.

e
new diffusion tensor

vk = local velocity (e.g., obtained by averaging)
0k > 0 = method parameter controlling the strength of anisotropic diffusion
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(10.2.2.30)

This tampering affects the solution u
(solution of (10.2.2.30) # solution of (10.2.0.1))
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Definition 10.2.2.31. Consistent modifications of variational problems

A variational problem is called a consistent modification of another, if both possess the same
(unique) solution(s).
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Computational domain: unit square Q) = [0, 1]
—eAu + (%) -gradu =0

Dirichlet boundary conditions: u(x,y) = 1 for x > y and u(x,y) = 0forx <y
Limiting case (¢ — 0): u(x,y) = 1forx > yand u(x,y) =0forx <y o=l

layer along the diagonal from ((1)) to ((1)) in the limit e — 0
2D triangular Delaunay triangulation, see Rem. 4.2.2.3
linear finite element upwind quadrature discretization
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upwind quadrature solution
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streamline-diffusion solution
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+ O =|0,1[%, model problem (10.2.0.1), v(x)

4+ Finite element discretization, Vj;, = S?(M) und sequence of unstructured triangular “uniform”
meshes, with
e upwind quadrature stabilization from Sect. 10.2.2.1,

e SUPG stabilization according to (10.2.2.35).
(Approximate) L2(())-norm of discretization error (computed with high-order local
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