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Robust discretization in the singular perturbation limit

We desire a robust discretization of (10.2.2.1)
= discretization that produces qualitatively correct () solutions for any € > 0

(x): “qualitatively correct”, e.g., satisfaction of maximum principle, Thm. 10.1.3.13]
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Linear finite elements, M=30

X

FE solutions



©

Observaton ¢ <L | = Sponees asillatins
(10.228) for £ = O

Wi = e = dh £lih) o=l M
—>  oven- odd c/ewupéf% ( kéfr)gé{/m LSE &v even M )

é 0.227 ( Discehizabon of 1D Umit /Diﬁblém )

W&M - Rebust pomeical medhatly Gv (S/‘WW
per furbed pobams must wpe with He [mit p/@é/em

Limit pioblem, £ = O ()= #lx) & OV

Hiv1 — pi = hf(C:)
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o

Explicit Euler method:
Implicit Euler method:

1 =0,...,M,
i=0,... M.

Explicit Euler: %(xi) ~ u(x,-+1)h— u(xi) , Implicit Euler: %(xi) ~ u(xi) _I_le(xi_l) .
[ frwwd d.q.] [ bacleawed d g
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1. Linear system arising from use of backward difference quotient E| = %
A | x=X; {
€ 2e € . .
(—E—1>;z,-_1 + 771 i+ —gHit1 = hf(ih), i=1,..., M-1, (10.2.2.8)
2. Linear system arising from use of forward difference quotient E| = %
X | x=X; (
€ 2€ € . .
—E}l,'_l + 7—1 Ui + (—Efl)yiﬂ =hf(ih), i=1,..., M-1, (10.2.2.9)
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osl We revisit the model problem of Ex. 10.2.2.4.

Zost <1 exact solutions for different values of €

o4r We study the solutions obtained by the

03r discretizations (10.2.2.8) and (10.2.2.9).
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Upwind discretization, M=30
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Downwind discretization, M=30
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(Linearly interpolated) discrete solution satisfies maximum principle (3.7.2.1).
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System matrix complies with sign-conditions (3.7.2.8)—(3.7.2.10).
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(3.7.2.8): positive diagonal entries,

(3.7.2.9): non-positive off-diagonal entries,

“(8.7.2.10)": diagonal dominance,

++

1. Linear system arising

2. Linear system arising from use
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use of backward difference quotient
d X | X=X h
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(—E—l)}li_l + (TZ+1) + —F}lH_l = /’Zf(lh) , 1= 1, . .,M —1 ,

au _ Hig1 — i,

forward difference quotient =
dx |x=x; h

SE )0 = hf(in), i=1,..,M—1,
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Triangle domain Q= {(x,y) : 0 <x <1, —x <y < x}.

Velocity v(x) = ((1,) > (10.2.0.1) becomes —eAu + u, = 1.
Exact solution: ue(xy, %) = x — —Lz (e 171/ —e
accordingly

~1/€) Dirichlet boundary conditions set

Standard Galerkin discretization by means of linear finite elements on sequence of triangular mesh

created by regular refinement.
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