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0.3.3.1. \SP(H" Step Timestepping. (=St 75)
chs = sum of fwo fnchops
/3\
y=g(ty)+r(ty), gr:[0,T] x R"+— R". (10.3.3.1)
(;) Idea: Inturns solve 8 zg t§ z f(( ;)),’ over small timesteps.
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Strang splitting single step method for (10.3.3.1), timestep 7 := {; — {; 1 > O:
compute y/) 2 y(t;) from yU~1) a y(t;_1) according to

it

@ y = z(tj_1 +371), where z(t) solves z=g(tz), z(tj1) = y(j‘l) ) (10.3.3.2)
@ y :=w(t;) where w(t) solves w=r(t,w), w(ti1)=y (10.3.3.3)
@ y D= z(tj), where z(t) solves z=g(tz), z(ti1+37) =y (10.3.3.4)

S P/zzd%c © by aether  SSA

Theorem 10.3.3.5. Order of Strang splitting single step method

Assuming exact solution of the initial value problems of the sub-steps, the Strang splitting single
step method for (10.3.3.1) is of second order.
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> Stang splid-skep methool Hor - convechin-diffizsion eeolution o.
( w/ Dinchle be. vixt) qét/)(,é) (xt) €921 I0,TL)

@

(10.3.3.2)

d
a—‘f—eAw—O in Q) x|t

w(x, t) = g(x,t) Vx € 0Q, b <t<tig+ —ZT ,
w(x, ti1) = uU=Y(x) vxeQ.

]] l,t] ]+ T[

“ (10.3.3.6)
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0z
§+V( x,t)-gradz = f(x,t) inQx|t;_ 1, ],
(10.3.3.3) < z(x,t) = g(x,t) oninflow boundary I, , b1 <t<t, (10.3.3.7)
z(x,tiq) =w(x, i1 +57) VxeQ.
A
= pue hamopat  prbiem
@ ow 1
y—GALU =0 inQx]tji_1+ 57,4,
(10334) < wxt)=g(xt) VxedQ, b +it<t<t, (10.3.3.8)
w(x, tig+57) = z(x, ) VxeQ.
Thenset  u')(x) := w(x, k), x € Q).
= pmbo&t | BVP

Remn 10.3.3.9 - (Leap(a“%a_ ‘/MPZZWZM{Q/W ﬂ;/ S/wmg y/{ﬁ% )

combine the last sub-step ® with the first sub-step @ of the next timestep

tr t3

< sub-step @, —: sub-step ® & ®
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10.33.2  Tarhicle Methad {or Pore Transport
Recald  /MNOC  soluton (= ek 03.2)

t)-gradu = f inQ:=Qx]0,T[,
u(x,0) = up(x) inQ),

@ + v(x
ot ’

u(x,t) =g(x,t) on Tinx|0,T[ ,

[in :={x €9 v(x) - n(x) <0} .
Case [ =0:

Jf y(s) e YO<s<t,

B u(xt) = o (o)
- Jf y(so) €90, y(s) € Vsg<s<t,

g(y(s0),50)

for (x,t) € Q, where s — y(s) solves the initial value problem for the streamline ODE

D(s) =viy(s)s) , y() =x,

Plond P&t/rﬁ'cl( Fadw?ﬁy
“Q(’jﬂe(/d/( £

uo(x0) + [ f(y(s),s)ds
B y(x,t) = 0 ;

8(y(s0),%0) + [ f(y(s),s)ds

S0

Jf y(s) e Q) VO<s<t,

(10.3.3.11)

(10.2.1.11)

(10.3.3.12)

(10.3.3.13)

Jf y(sp) €9, y(s) e A Vsp <s <t.

(10.3.2.7)
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4+ IBVP (10.3.3.11) on Q) =]0,1[%, T = 2, with f =0, ¢ = 0.
4+ |Initial locally supported bump u(x) = max{0,1 — 4”x — [%ﬂ H }.
4+ Two stationary divergence-free velocity fields
| —sin(7x7) cos(mx2)
* vi(¥) = [ cos(7txy) sin(7rxy)

o vy(x) = ["Q].

X1

] satisfying (10.1.1.5),

4 |Initial positions of interpolation points on regular tensor product grid with meshwidth /7 = %.
4+ Approximation of trajectories by means of explicit trapezoidal rule (method of Heun).
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velocity field v (circvel) velocity field vy (rotvel)
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Idea: two views

(1'))

“particle temperatures” u( p;

0

Nodal values of finite element function u,(,j) e SY(M)

Disamion for CD-|BVP

Ju L
{ = —edu+v(x)-gradu = f inQ:=Qx]0, T[, (10.3.1.1)

u(x,t) =0 Vx€d,0<t<T , u(x0)=ux) VxeQ.
— Sf(%/ ”h'm@fé/) of Pl of size 7 =0« t,, —= ¢
”94‘7761/) e mwh /M%H)
e 5/1(”/%”)

F

T Diffusion ”%é/) 5@ :

1S, (M) -FE + wmpiit RE-SSM - MOL fov

ow ,
T eAw =0 in Qx]ti_1,tj1+37[,
w(x,t) =0 Vxe€ o, i <t<tjiq+ %T ,

w(x, tji_1) = u(hj_l)(x) Vx e Q).

. Alvechon \g/gp .
Parhcle method v pllKe fensport (VP

0z .
§+v(x,t)-gradz=f(x,t) in Qx]t; 1, ti[,
z(x,t) =0 oninflow boundary 'y, , tj 1 < t < t;,

z(x,tj_1) = wp(x,tj1 + 3T) VxeQ.

lniha! pf///fh'c& loca hon's 42,;692 = oy 47/ Ve
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€ =10"5:

Lagargin achactio: M « 1131 00000, 7 « 0 002000, W0l 130000 Lagrangien achact o1 N = 1000000, 7.« 0 00900, 1022000 Lagrangien achvecsos N = 131000000, © = 00000, 10300000 Lagrangin achvection: N = 151, 000000, ¢ = Q.00F000, W) 506000

I/ Dfwsion (half) s on @

—= b  sprens difsion
Significant diffosion

Same IBVP (10.3.1.4) as in Exp. 10.3.1.3: —_— € =0.1

L T T v Lagangin acactios ¥ = 113 0000, © « 0 005000, W0 130000 Lagrangin achect ot N = 126000000, 7 0 00900, 10252000 Lagrangin acveciors ¥ 13000000, © « 009000, 10360000 Lagrangin achvection: M = 151, 000000, 7 = 0005000, kel 52000

Exp 10.33.20 (¢PM for 1D CD-1BVP )

ou €82u N ou 0 il - " "
ot ox2  ox el g B | - o .
u(x’ 0) s max(l — 3|x — %I/ 0) , o7} : + | =: =: ,/“"‘N

u (O) =u (1) =0. 06l + % . “ B N ' 1 ..."/w’“\"'-.

- 0z o " 0z 0 * 0z - % o ‘
= + - at %, o % a1 ' a1l
05f . + b - . ]
+ ar 0z o3 [ as as ar an as ar 0z aa a4 as [ ar on [T ar az a3 a4 s o5 a7 an a9 al az [E] a4 s [ o an as
x x x x

4+ Linear finite element Galerkin discretization - +

with mass lumping in space N
4+ Strang splitting applied to diffusive and convec- o3|
tive terms o2}
4 (Sub-optimal) implicit Euler timestepping for N +

01} +
diffusive partial timestep + +

X — uO (x) D c() 051 Of2 0?3 0f4 OTS 016 0f7 OI.8 0I9 1

s | “Reference solution” computed by method of lines, see Exp. 10.3.1.3, with 1 = 1073, 7 = 5-107°
A (“overkill resolution”):

+ -1 w1 = 01001000, 7 = Q.000CED, 1o0 125050 Eopd Euder: 1w 0001000, 7 = QOO0CED, ke 0250050 Bl Euder: e 0001000, 7 =0 00000, W0 IT5ED B Euder e 0001000, 7 0 0OKED, o0 50000
'
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P 2 }O 2 Advantage of Lagrangian (particle) methods for convection diffusion:

—_ T~ ops s . . . “ . »
P D N Q _ jp} / [ 4+ No artificial diffusion .reqwred (no sn?eanng)
I/ - ~ ;‘ No stability induced timestep constraint

A
{ e T vy A velodly feld 2
NAREEPEE
\ NN o~ - / / .
NN S—— :: 5 f 376[[56( /{fpg&/%//) Drawback of Lagrangian (particle) methods for convection diffusion:
N~——— ) 4 Remeshing (may be) expensive and difficult.
[ 7}7 U% (/fb/ff/}/ ] Point advection may produce “voids” in point set.
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