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ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video
Section 11.1: Conservation Laws: Examples

Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 15, 2021
(C) Seminar fir Angewandte Mathematik, ETH Zrich

Prerequisites.
e Elementary calculus and some fluid dynamics

Dependency. Familiarity with [Lecture — Section 10.1.4] is useful
2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Key macroscopic quantity: (normalized) density of cars
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( I ) . Key macroscopic quantity: (normalized) density of cars

Ay .. ' .
us(x,t) = 2—2 flie{l,...,N}: x=0<x(t) <x+0}, (I11.2.12)

where § > ()is the spatial averaging length.

[ﬂ) : Required:

concept of a macroscopic velocity

Idea: spatial averaging of velocities of cars

Yicus(x) Xi(t)
iUs

Us(x) = ={ie{l~"., N}: x—06 <x;(t) <x+d} .

po of G@m by (x-dyxt§ J

vs(x,t) = (x) |, (I.1.2.18)

Y3 J// A pm“ngz the  Sle x w ool hime
= luex auvn %7//, 75) = MJ/fﬂé) W(/Xéy

' X
> (ongwdahon of cm t
14+
T = Ti-to |- E—
fo
X
Xo 9
h !:><) '—XO
X1 X t ty
/u(;(x,t])dt— /ué-(x,to)dtz /ch(xo,t)dx— /qb-(xl,t) dx . (11.1.2.18)
change of no. of car;,on [x0,x1] in [to,t1]  no. of cars enteringlle:ving [xg,x1] in [tg, t1]

_— ,, Mo —> 1
L\fan A/‘—"BOZ p AU\': A/ (_DO J 7&7{(—‘97
= Limid balonte (oo
X1 Xq f'l t'l

/u(x,tl)dt— /u(x,to)dt = /q(xo,t)dx— /q(xl,t) dx . (]/-1.2.20)

change of no. of cars on [xp, x1] in [tg, ;]  no. of cars entering/leaving [xg, x1] in [tg, t1]



O Difenkial B o balimee lanw
%&ﬁ()fﬂé t - 7 &(ﬂﬂﬁ% > W/» CJWK/'M

X1
/ w(x, ty) —u(x, to)dx = h(u(xo, ty) — u(xg, to)) + O(h*) for h—0,

X0

/q(xl, t) — g(xo,t) dt = 7(q(x1/to) — g(x0, to)) + O(T?) for T —0.

ou

a—lt(xo t))T+O(T?) for T—0,
d

q(x1,t0) —q(xo, to) = a—Z(xo, to)h +O(h*) for h —0.

Ba[ﬂwb/[,/ (Xm _ /}é\

Fov  h, o —70

0% 5°)

o~ %(x,t)+g‘l(x H=0 in0x]0,T]. 111.2.21)

Next . aonstitohie labinshép g =4 (e )

N —w

o(x,t) =1—u(x,t) = qxt)=u(x

(I1.2.21) & (|[.1.2.22)

+ macroscopic counterpart

o

Xzzﬂ’"

17

1%

pap
x.

Gbit) = T~ atglot)

(8.1.2.17)

ot ar(

—

initial conditions (8.1.2.7):

u(x,0) =up(x), x€eR.

B (1 —u(x,t)) . (1.1.2.22)
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Consider the Cauchy problem

%nLdiv(v(x)u):O in Q:=Rx]0,T[,

u(x,0) = up(x) forall x e R? (initial conditions) .

(8.1.1.5)

for linear advection for d = 2 and the velocity field v(x) = [_\:2] . Write down the solution u = u(x, t) in
terms of the initial data 1y = ug(x).

B

Let ® : RY x R — IR? be the flow induced by a smooth velocity field v : R — R?. Which partial differ-
ential equations does the function

w(x,t) = ug(x), x=®%1t), xR’

satisfy. Here 1y : R? — R is a given differentiable function with bounded support.

C:

In an x — t diagram sketch the trajectory of a car starting at t = 0, x = 0 and moving with constant
acceleration to right.

D -

Which traffic flow conservation law arises, when the speed law

is replaced with
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