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Conservation law for transient state distribution  : Q — R: u = u(x, t),for0 <t <T:
d/ dx+ [ f(u,x)-ndS(x) = [ s(u,x,t)dx ¥ “control volumes” V C Q (].2.1.1
Prerequisites. i udx / u,x)-n X) = /s u,x, t)dx control volumes . [.2.1.1)
e Calculus in 1D and higher dimensions v v 4
Video and accompanying tablet notes may not match completely! change of amount in V inflow/outflow production term
Corrections and updates may have been made in tablet notes. L , , A
[ P y ] > Llux inchon 7@ /Exg?, —= R

2 Note the change in chapter numbers, which also provide leading digits for labels:

Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11 £=> @M// @\f é@%ﬂg /%m/ (0/754//%'00 / M;%
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Trailing digits in labels are not affected.
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B> Space-time integral form of (8.2.1.1), cf. (8.1.3.2),
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/u(x,t])dx— /u(x,to)dx+ / /f(u,x)-ndS(x)dt = //s(zt,x,t)dxdt
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forall V CO,0<ty<ty <T,n = exterior unit normal at oV
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= (local) differential form of (8.2.1.1):
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%u + divyef(u, x) = s(u,x,t) inQ |. (|1.2.1.5)

div acting on spatial variable x only
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linear advection: %(pu) +div(v(x, t)(pu)) = f(x,t) in Qx]0,T[, (QcCRY, (/.1.1.3)

d d
Burgers equation: o + —(%uﬂ =0 inQx]0,T[, (QCR),

o (/1.3.4)
9
traffic flow equation: a—’; +—(ul-u) =0 nOx|0,T[, QCR), (1/.1.2.23)
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+ For Burgers equation (//.1.3.4): f(u,x) = f(u) = $u%, s =0,
4 For traffic flow equation (//.1.2.23):  f(u,x) = f(u) =u(l —u), s=0,

4 For linear advection (11.11.1.3):  f(u,x) = v(x, t)u, s= f(x,t)
(Note: in this case the conserved quantity is actually pu, which was again denoted by 1)
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V' Review quadkions 11.2.1.9
[ nswer without adn |
A

The differential form of a generic scalar conservation law is

iu + divef(u,x) = s(u,x,t) in Q:=Qx|[0,T], (8.2.1.5)

ot

with flux function f : U x Q — R? and source function s. What is the integral form of (8.2.1.5)?

g

Identify the flux functions and source functions for the following scalar conservation laws:

a%(pu) +div(v(x, t)(pu)) = f(x,t) in Qx]0,T[, (QcCRY, (81.1.3)

%—i—ll% =0
ot ox
ou 9 _
§+£(u(l—u)) =0 inQx]0,T],

linear advection:

Burgers equation: inx]0,T[, (QCR), (8.1.3.4)

traffic flow equation: (Y C R). (8.1.2.23)

C

The heat equation if‘rt‘ — Au = 0 also fits (8.2.1.5) when the flux function is chosen appropriately. What is
this so-called diffusive flux?
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