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Dependency. [Lecture — Section 11.2.1]
2 Video and accompanying tablet notes may not match completely!
[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , OId Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Lemma |(.2.2.6. Classical solutions and characteristic curves

Smooth solutions of (||.2.2.1) are constant along characteristic curves.
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£ < 0.7: solution by (8.2.2.7) the wave breaks: “multivalued solution”
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A

In the x — t-plane sketch the characteristics for the Cauchy problem for the scalar conservation law

Ju 0 .
E+$ (u) = 0 In]RX]O,T[,

u(x,0) = wup(x) iNnR.

(8.2.2.1)

with flux function f(u) = u? and initial data

1+x for—1<x<0,
up(x) =<¢1—x for0<x<1,
0 elsewhere.

B:

For a scalar 1D conservation law with flux functions

1. f(u) = u?

2. f(u) = sin(mu),

3. f(u) = cos(mu)
and initial data up(x) = 1for —1 < x < 1, up(x) = 0 elsewhere, sketch the family of characteristig
curvesin an x — t diagram.

C -

Directly verify that, if well-defined, the implicitly defined function

u(x, t) = ug(x — f(u(x,t))t), (x,t) e Rx[0,T],

with a strictly convex and smooth flux function f : R — IR provides a solution of (8.2.2.1).

(8.2.2.7)
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