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Dependency. [Lecture — Section 11.2.1] and [Lecture — Section 11.3.2]
Video and accompanying tablet notes may not match completely!
A [Corrections and updates may have been made in tablet notes.]
2 Note the change in chapter numbers, which also provide leading digits for labels:

Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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and its conservative finite volume discretization on an (infinite) equidistant spatial mesh with mesh width
h > 0:
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We abbreviate fj+%(t) = F(pj—my1(t), -, Wivm, (1))
Special case:  2-point numerical flux (m; = m, = 1): F=F(v,w)

(v = left state, w = right state)
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Definition 1(.3.3.5. Consistent numerical flux function

A numerical flux function F : R™ """ — R is consistent with the flux function f : R — R, if

F(u,...,u)=f(u) YueR.
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Idea:

where 7 (x, t) =

obtain suitable intermediate state as

ut(v,w) = p(0),

Y (*/t) solves the Riemann problem (— Def. 8.2.5)
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A
State concrete formulas for the following two-point numerical flux functions, when applied to a 1D scalar
conservation law with flux function

1. f(u) =exp(u),u € R,

2. f(u) =u*u eR:

O Central flux

Fe(v,w) = f(3(v+w)), vw€ER,

@ (local) Lax-Friedrichs flux:

Fir(v,w) = 3(f(v) + f(w)) — $(w—10v) - max |f'(u)], (8.3.4.16)
min{v,w}<u<max{v,w}
® upwind flux
s> f(w)—f(v)
Fuw (v, w) = f(v) f ?—0' sim ) "we - ProFw, (8.3.4.19)
f(w) ,if s<0, f(v) forv =w,
® Godunov flux:
1<m£ f(u) ,if v<w,

Fep (v, w) =  U=1=Y 8.3.4.33
cp(v,w) max f(u) ,if w<ov. ( )

w<u<v

E -

Give an example of a strictly concave flux function f : R — IR and of two states v, w € IR, for which the

upwind flux
it §>0, ) /@)
Fuw (0, w) = flo) it 52 =] we forv # w, (8.3.4.19)
f(w) ,if $§<0, f'(v) forv=w,
and the Godunov flux:
‘min f(u) ,if v<w,
Fop(v,w) = { vSH= _ (8.3.4.33)
max f(u) ,if w<vo,
w<u<o

yield different results.
Give an example of a strictly concave flux function f, for which they agree for all input states.

C

For Burgers equation with flux function f (1) = u? characterize all pairs of left and right states u;, u, € R
for which a conservative finite volume discretization of the 1D Riemann problem based on the upwind flux
produces an expansion shock that violates the Lax entropy condition.

Hint. The upwind flux fails in situations where transonic rarefactions emerge as entropy solutions.



