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Dependency. [Lecture — Section 11.3.2] and [Lecture — Section 11.3.4], also related to [Lecture —
Section 11.2.7]

ﬁ Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Definition ({.3.5.5. Monotone numerical flux function

A 2-point numerical flux function F = F(v, w) is called monotone, if
F is an increasing function of its first argument v (Vw)
and

F is a decreasing function of its second argument w (Vv).
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Corollary ((.3.5.6. Simple criterion for monotone flux function

A continuously differentiable 2-point numerical flux function F = F(v,w) is montone, if and only if

a_F(v,w) > (0 and a—P(v, w) <0 Y(v,w).

v ow (}3.5.7)

Lemma |.3.5.8. Monotonicity of Lax-Friedrichs/Rusanov numerical flux and Godunov flux

For any continuously differentiable flux function f the associated Lax-Friedrichs/Rusanov flux
(8.3.4.16) and Godunov flux (8.3.4.33) are monotone.

Vool v GCodunv Flux

B> Godunov numerical flux function

‘min f(u) ,if v<w,
Fep (v, w) = { U=U=¥ (//.3.4.33)
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Lemma 11.3.5.13. Non-oscillatory monotone semi-discrete evolutions

If i = ji(t) solves (11.3.2.8) with a monotone numerical flux function F = F(v,w) and ji(0) has
finitely many local extrema, then the number of local extrema of ji(t) cannot be larger than that of

il0).
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Show that for smooth and convex f : R — R the Godunov numerical flux

satisfies

‘ dFgp

min f(u) ,if v<w,
Fep(v,w) = { USUs® _ (8.3.4.33)
max f(u) ,if w<v,
Ww<u<v
dF, oF,
f}D (v,w) >0 and GS)D(U’ w) <0 V(v,w), (8.3.5.7)
aFGD /
v, w)|, v,w)| < max u Y(o,w) .
( ) ow ( )| < min{v,w}<u<max{v,w} |f ( )‘ ( )

o

A mapping H : RZ — RZ (RZ is the vector space of real-valued sequences (y]-)
vector space of functions Z — R) is called monotone*, if

Gizp VieZ = (%((Ck)kez))j >

e Z’ equivalently, the

(H((mkez)); VieZ.

e Show that H : RZ — RZ which is continuously differentiable in each component is monotone, if

oH

— | 20 VjkezZ.
<8P‘k),’_ !

e Applying explicit Euler timestepping with timestep T > 0 to the semi-discrete evolution arising from
the conservative finite-volume discretization of a scalar conservation law % + % f(u) =0 onan
equidistant spatial mesh (mesh width 7 > 0) and based on the Godunov numerical flux yields a

mapping H. : RZ — RZ. Show that this mapping is monotone provided that

T 1 , )
- < — = : <u< .
TS oA M := max{|f" (u)| min up(x) <u < max up(x)}

>~ Hint. Depends on Question (Q8.3.5.14.A).

Remark. Mappings like . will be investigated more closely in § 8.4.1.8.
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