@D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video

Section 11.4.1-Section 11.4.2: Timestepping:
Fully Discrete Evolutions and CFL-Condition

Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 15, 2021
(C) Seminar fir Angewandte Mathematik, ETH ZUrich

Dependency. |Lecture — Section 11.3.2]
Video and accompanying tablet notes may not match completely!
[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
A Old Chapter 6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Definition Z.3:3.|. General Runge-Kutta method —

For coefficients b;, a;; € R, ¢; := Z}Ll ajj, i,j =1,...,8,s € N, the discrete evolution ¥5! of an
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(t, u), is defined by

‘I’“""Tu =u+T Z b,’k,’ .

k,’ = f(f—i—C,'T,u-i-TZ[l,'jkj) , i=1,...,8 ,
= i=1

j=1

The k; € V,, are called increments.
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explicit trapezoidal rule
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From Thm. 8.2.7.3 recall the maximal analytical domain of dependence for a solution of (8.2.2.1)

D™ (%, 1) :={(x,t) e Rx [0,t]: $min(F — 1) < x =T < $max(t — 1)} .
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Definition [{.4.2.5. Numerical domain of dependence

temporal mesh (x;

dm € No:

Consider explicit translation-invariant fully discrete evolution i
= hj, j € Z, ty = kt, k € INp) with

(%(ﬁ))] -

Then the numerical domain of dependence is given by
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D, (xj, ty) == {(xm, 1)) ERX [0, tg]: j—m(k—=1) <m <j+m(k—1)}.
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(e = coarse grid, @ = fine grid, = = d.o0.d)
< Sequence of equidistant space-time grids of R x
0, T] with T = yh (t/h = meshwidth in time/space)

If v > CFL-constraint (8.4.2.11) then

analytical domain numerical domain
of dependence of dependence
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Definition 6.2.6.31. General Runge-Kutta method —

=1

The k; € Vj are called increments.

For coefficients b, a;; € R, ¢; := }:?zl aij, i,j = 1,...,s,s € N, the discrete evolution ¥ of an
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(t,u), is defined by

kil:f(f-f-CiT,u-f-TZﬂijkj), i:1,...,S , ‘I’““u::u—i—TZbiki.

i=1
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We consider an abstract semi-discrete evolution in IRZ:

dji )
B = u(@(t), Ln:RZ—RZ.

dt

We perform timestepping based on an s-stage RK-SSM described by the following butcher scheme:
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The 2-step Adams-Bashforth multi-step method with uniform timestep 7 > 0 applied to the ODE
u = F(t,u) generates a sequence cf-seguence of approximate states u'/) ~ u(t;), tj:=to+1j, by
the 3-term recursion

ul ™ = ul) + 7(3£(t;, ul)) — 1f(t; 4, ul"Y)) .

; (8.4.2.14)

Give the stencil of the fully discrete evolution when this timestepping scheme is used for the FV-MOL-ODE

dp; 1

L) = =3 (FQu(8), pia (D) = Fria (0, 15(1) , jE€ 2, (8.3.28)

on a uniform space-time grid and with some numerical flux function F : R x R — RR.



We consider a Cauchy problem for 1D linear advection with v > 0
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For spatial discretization we use a conservative finite volume method with Lax-Friedrichs/Rusanov numer-
ical flux. For timestepping we employ

1. the explicit Euler single-step method,

2. the implicit Euler single-step method.
In both cases derive the equations for the resulting fully discrete evolutions on a uniform space-time grid
with spatial mesh width 7 > 0 and timestep T > 0.
For both choices characterize the numerical domain of dependence for v = 1.

Hint. The (local) Lax-Friedrichs/Rusanov numerical flux function for the scalar conservation law
du d —0i
S+ a-f(u) =0is

Fie(0,w) = 3(f(v) + f(w)) — 3(w —0) -

ou) =0 in f):]Rx]O,T[, u(x,0) = up(x) VxeR. (8.1.1.11)

- max
min{v,w}<u<max{v,w}

|f'(u)] . (8.3.4.16)
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Give reasons why explicit timestepping methods are preferred for the semi-discrete evolution problems
arising from conservative spatial finite-volume discretization of 1D scalar conservations laws.

We consider the fully discrete evolution for solving a Cauchy problem for a 1D scalar conservation law
based on

(i) a conservative finite-volumne spatial discretization with 2-point numerical flux,
(ii) an s-stage explicit Runge-Kutta single step method described by the Butcher scheme
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We obtain a solution ji*) € RZ, k € N,.
Assume that the initial data 1 : IR — IR are constant outside a bounded interval. Which conditions on the
RK-SSM ensure the discrete conservation property
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