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Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Theorem [|.4.3.20. Stability function of explicit Runge-Kutta methods

The execution of one step of size T > (0 of an explicit s-stage Runge-Kutta single step method
c| U
(— Def. 6.2.6.32) with Butcher schemeﬁ*?f (see (6.2.6.34)) for the scalar linear ODE y = Ay,
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A

Let £, : RZ — RZ be a linear translation-invariant operator.
1. What does it mean that L, is linear?
2. Give a definition of what is meant by “translation-invariant”.
3. What is the symbol of L;,?

3

Conduct a von Neumann stability analysis for the linear evolution

Livg— 2U; + Ui
gy = 1 11}2] Al hso, (8.4.3.26)

when
1. explicit Euler timestepping,
2. the explicit trapezoidal rule
with uniform timestep T > 0 is used for discretization in time.
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