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Prerequisites.
e Norms on function spaces
Dependency. [Lecture — Section 11.3.2]
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Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Theorem |(.2.7.3. L'-contractivity of evolution for scalar conservation law

vVt €]0,T[, R > O: / |u(x,t)|dx < / lug(x)| dx ,
lx|<R ! |x|<R+st
L [~ nom

with maximal speed of propagation

$ := max{|f (&)|: inf up(x) < & < supup(x)} .
x€R x€R

(8.2.7.4)

0.9}

0.8}

0.7F

06

0.5

04

0.3}

0.2F

0.1

1 L 1
1 -05 0 05

1 1 1
1 15 2 25 3
u(x,t)

“Exact solution”: Initial data (BUMP)
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O(hT) forh — 0\ ¢ numerical flux is consistent of orderg € N (8.4.4.6)
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Order barrier for monotone numerical fluxes

Monotone numerical fluxes (— Def. 8.3.5.5) are at most first order consistent.




O Rewtew questons 14,412
| |_/\/ b amuen withod adn
A

When conducting convergence studies of conservative finite volume methods for Cauchy problems for
scalar conservations laws on uniform space-time grids (spatial mesh width /7 > 0, timestep size T > 0)
one usually examines the errors

7

. (k) ~ (k)
erry(h) := m>axl1 Z.”lf —u(xj, )| = r’1(1>ag<Huh - u(-,tk)‘

k>0 LY(R)
erre (M) := max max |;4(.k) —u(xj, ty)| =~ maxHu,(k) —u(-, tk)H .
k>0 jez ') J k>0 I 7 L*(R)

k
1. In these formulas, what do ;t; ), ty, uy, and u stand for?
2. Why are the above error expressions considered relevant for scalar conservation laws?
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The local consistency error of a 2-point numerical flux F = F(v, w) associated with the flux function
f :R — R is defined as

('_f']?(f))j = F(u(xj,t), u(xji1,t)) —f(u(xH%,t)) , JEZ , (8.4.4.5)
What is the consistency order of F, how is it computed, and what assumption limits its predictive power

for the actual convergence of a conservative finite-volume method for a Cauchy problem for a scalar
conservation law?
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