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Definition

Given an (infinite) mesh M := {]x;_1,xj[}jez (xj—1 < X;), a linear reconstruction operator R v1 is

a mapping

taking a sequence i <€ RZ of cell averages to a possibly discontinuous function Ryt that is
piecewise linear o

||.5.1.3. Linear reconstruction

Ry : RZ — {v e L*(R): v linear on |Xi 12, Xj1p| Vi€ Z},

dual cells.
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Right slope: 0;j(f) (11.5.1.12)

Left slope:  0;j(f) (1.5.1.13)
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Right slope selection

@ Left slope selection
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Monotonicity preserving linear
reconstruction:

4 constant at plateaus

4+ constant at (local) extrema
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Definition /(.5.2.1. Monotonicity-preserving linear reconstruction (MPLR)

An linear reconstruction operator R 4 (— Def. 8.5.1.3) is monotonicity preserving, if

#i < pjy1 = Ryfi non-decreasing in |x;, x; 1],

(Rai)(xj) = uj uj > piv1 = Ryyji non-increasing in xj, xj,q| .
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Lemmal|.5.2.7. Linear monotonicity preserving reconstruction trivial
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Everydinear, monotonicity preserving (— Def. 11.5.2.1) linear reconstruction yields piecewise con-
stant functions.
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Definition ||.5.2.9. Minmod reconstruction

The minmod reconstrl'Jction Rmm is a piece- 0_ ~ / > EXM MIDZ/{ Coe éé]zww @;}(%’f; %J éj&)%fl)?f}%/ 6/%&
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4 Piecewise linear reconstruction (— Def. 8.5.1.3) with minmod slope limiting (— Def. 8.5.2.9):

”, 5 - 3 W USC L 5&661’776 1/]-jE == %miand(}lj,g] — Wi Hj— ;t]-,l) X (8.5.3.1)
( MW?W UPMHV)% Wm(’ Ild\)/ CWZ&W &WS > 4 2nd-order Runge-Kutta timestepping for (8.5.1.1): method of Heun, cf. (8.4.1.11):
For smeoth <olechons Wée[ ey lems.omr [ || Qb 6 FV-MOL-ODE -

1
| spetive o] = O(hT+ J) Li(fi) := —7 (F @0, 735(¢)) — F@GRO D))
W)%JVZ/&V [ :;”(k)+%rﬁh(ﬁm), 85.32)

By oo bco/&ma'% vast eflictent g =P




#

11(0.50)

08

06

0.4

02

-1

Burgers equation (transsonic rarefaction), N = 60

T T T T T T

-==u
#*# 0de45, 157 timesteps +
+  Heun tmestepping,cfl = 1.0 3'

*
e

s */
* !

*
D

I 1 L L L L

I 1R .
* |

T

e e

-25 -2 -15 -1 -0.5 0 0.5 1 15

1.(2.00)
e

X
Burgers equation (transsonic rarefaction), N = 60

T T T T T T

-=--u

*  0ded5, 725 timesteps

08r +  Heun imestepping, ¢l = 1.0

04F *

02} 3
R

04} *
-06 B *y

¥
-0.8} ¥

*
] PR L A

2
.
L

>

t =

3 077/'@%/ hie -
6@%%5 V




Revrew Mﬁ‘on 15.3 5
[ Answey withoaut (m/a'ry/ iz, inrmaton |

Argue why a linear monotonicity preserving piecewise linear reconstruction must impose vanishing slopes
throughout.

K-

Explain the meanings of “linear” in the phrase “non-linear linear reconstruction” (in the context of high-
order finite volume methods for 1D conservation laws).

C

Fully discrete evolutions for scalar conservation laws on uniform space-time meshes can be described by
means of stencils.

What will be the width of the stencil for the fully discrete evolution operator, when using two-point numerical
fluxes, piecewise linear reconstruction based on min-mod limiting, and a (generic) s-stage explicit RK-SSM
for timestepping for the discretization of a scalar conservation law in 1D.




