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Definition 11.6.2.2. Non-linear system of conservation laws

Given m € IN, an open set U C R™, and a continuously differentiable flux function F : U — R"™
a (translation invariant, “constant-coefficient”) non-linear system of conservation laws (NLSCL)
—| in one spatial dimension for the unknown functionu : D C R x R* — U reads S

%—‘t‘(x,t)+aFag;‘)( t)=0 on D. (11.6.2.3)
Cemsomahon

B o

/ xt) (u(b, 1)) — F(u(a,t))) Va,beR, t>0. (11.62.10)
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—— The Jacobian DF(u) of the flux function F : R"” — R” must have m distinct real eigenvalues for |
anyu € U.




Assumption 11.6.2.8. Genuine non-linearity/linear degeneracy

The eigenvectors r;(u) and associated eigenvalues A;(u) of DF(u) must satisfy

grad Aj(u) -rj(u) #0 YVuelU or grad,Aj(u) -rj(u)=0 YVuel. (11.6.2.9)
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| Forug € (L*®(R))™, u: Rx]0, T[~ R" is a weak solution of the Cauchy problem (11.6.2.4),if |
| ue(L®(Rx]0,T[))" and -
] o T 0 —
9D
o //{ 9 (1, b) + Flu(x, 1))- lx t)}dtdx—/uo(x)-d>(x,0)dx=0, B
—00 () —00
| forall @ € (CP(R x [0, T[))™ fulfiling @(-, T) = 0. B
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, oh d
- conservation of mass B> =1 a(vh) =0,

(11.6.2.14a)

i > 2 O (ho? + Lgh?) = -
___conservation of momentum ﬁ( 1) + ﬂ( 10" +58h°) =0. (11.6.2.14b)
—— || | h o U B 0 1 —
7“ a [uz“ o lhv] ’ F(u) o ["%/ul +%gu‘;‘“ > DF(u) - [—(“z/u-l)z-l-gul 2“2/1:1} '

N - A (11.6.2.15)
/M ‘= /]Z<’ X /K

| 1

1623 Remypn FPobem v V1.5C

~ du JF (u) B ~ Ju for x<O0, o
7§(x,t)+ pp (x,t) =0 on Rx]|0,T[, u(x,O)—{ur for x>0, (11.6.2.17)
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Definition 11.6.2.29. Lax entropy condition for systems of conservation laws

A discontinuity separating states u; and u, and propagating at speed s satisfies the Lax entropy
condition (LEC), if
— (i) Ike{l,...,m}: Ap(u)) >3 > Ap(uy) .
(i) Vi <k Aj(w),Aj(ur) <3 = Q%JZZM
(iii) V] > k: /\j(ul),/\j(ur) > S /

p , y X e
1623 (LEC Ly SWE)
4+ Riemann problem for (11.6.2.14): h; = 1, h, = 3, v; = 0, v, = 0 (dam break), see Ex. 11.6.2.25,

~Fig. 614, Fig. 615 g '/[d/ —
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Solution of Riemann problem for non-linear systems

The computation of closed-form (“analytic”) “physical” solutions of Riemann problems for non-linear
systems of conservation laws is possible only for a few simple models. No general algorithm exists
so far.
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