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Prerequisites.
+ Partial differentiation
 Lagrange multipliers

Dependencies. [Lecture — Section 1.3|, [Lecture — Section 1.4], [Lecture — Section 12.2.1]
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2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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4 B : U~ Q acontinuous linear operator, defining the constraint throughu € U: Bu = 0.

linearly constrained minimization problem,

v* eU: v" = argmin J(v) .

vel ,Bv=0

(12.22.2)




——  Lemma 12.2.2.4. Necessary conditions for existence of solution of saddle point problems

_>

Any solution v* of (12.2.2.3) will be the first component of a zero (v*, p*) of the derivative (“gradi-

ent”) of the Lagrangian functional L: DL(v*, p*) = 0.
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v* solves (122.23) = dp* e U: DL(v",p")(w,q) =0 Ywel, geQ. (12.2.2.6)
Mre  expls 'a}‘/é/ vl
E;ZI:(Z),p)(w) = DJ(v)(w) + (p,Bw)q, v,wel, peqQ, (12.2.2.8a)—
—p(v,p)(q) = (4,Bv)g, paeQ, vel. (12.2.2.80)
= Mﬂ/ﬂfg/ Wpr
(DJ(v*),w) + (p",Bw)g = 0 Vwel,
—(12.226) < (12.2.2.9)

— (q, BU*)Q = 0 Vq cQ.
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~ | Seekv* € U, p* € Q =

o a(vt,w) + (p",Bw)y =" Hw) Vwel, B

(12.2.2.11)
N (Bv*, q)g =0 VveQ. B
SFWZMK[QQH/ b d el
v e Hi(div0,Q): /QDV:Dwdxz/Qf-wdx vw € Hi(div0,Q), (1221.45)
o H)(div0,Q) := {v e (HY(Q)): divv = o} . (12.2213)
B £ (R (2) ——= [(2) = K
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~ 4 the Hilbert spaces U = (H}(Q))4, Q = L*(Q)), T
4 the constraint divv =0 > B = div : U — Q, obviously continuous, —
+ ] <—> v o= iy u||Dv||*dx — Jof - vdx, a strictly convex quadratic functional

- v 3a(v,v) — £(v) (— Def. 1.2.3.2) with building blocks

o a(v, w) :=/Q;¢||Dv||2dx, 0(v) :=/Qf-vdx, vwel. (12.22.14)

~| Seek the velocity field v € (H}(Q)) and a Lagrange multiplier p € L?(Q)) such that B
fyDv Dwdx + fdlvadx =([f-wdx Vwe (H}(Q))?,
0 B

fdlvqux T = 0 Vg € L2(Q) . (12.22.16)
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o Choose p € L*(Q):= {q € L*(Q): /qux =0} . (12.2.2.18)—

— Linear constraint on “pressure” trial/test space L*(Q))

& 1223220 Thyy of SPPe

vel a(v,w) + b(w,p) = lw) Ywel,
: (12.2.2.21)

PeQ  b(v9) = g(q) V9eQ.

where + Uand Q are Hilbert spaces, with norms |-/, and ||-|| 5, respectively,
o 4+ a:UxU—Randb: U x Q — R are continuous/bounded bilinear forms,
4+ (:U— Randg:Q — R are continuous/bounded linear forms.

MDY = Sweld - blu,q) =0 Vys AT

~—  Theorem 12.2.2.23. Ladyzhenskaya—Babuska—Brezzi conditions (LBB-conditions) .

If the following two conditions are satisfied,
| (i) the bilinear form a is N (b)-elliptic (ellipticity on the kernel) .

] da > 0: |a(v,0)| > oc||v||lzj Vo € N(b), (LBB1)

(i) the bilinear form b satisfies the inf-sup condtion

— 4B > 0: suplb(v )|
veld “ “U

> Bllallqg VaeQ, (LBB2) -

then the variational saddle point problem (12.2.2.50) possesses a unique solution
(v,p) € U x Q, which satisfies

- folly + Ipllg < € sup LU 1 gy 1840) (122228)
weu Wlly — weu lqllo

with C > 0 independent of £ and g.
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- JA € R™: a(v,i) =7 AV Vi,v € R" o
- B € R"™: b(v,0) =@ BV Vv eR", & eR" -
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LBBX = J8 >0: sup ﬁT]fT‘v > Bl|@|, Vw eR". (12.2.2.35)
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/yDv Dwdx + fdlvadx = [f-wdx Vw e(H}(Q))?, -
0
0

(12.2.2.19)—

_ /dlvqux = Vg € L2(Q), B

- veld a(v,w) + b(w,p) = ((w) Ywel, o
: (12.2.2.21)

- PeQ (b9 =(8(g) va<Q. —

where + U and Q are Hilbert spaces, with norms ||-||;; and ||-|| 5, respectively,
4 a:UxU—Randb: U x Q — IR are continuous/bounded bilinear forms, o
4+ (:U—Randg:Q — R are continuous/bounded linear forms.




+ Hilbert spaces U := (H}(Q))%, Q := L2(Q),
— 4 bilinearfoom a <« (v,w)+— [,uDv(x):Dw(x)dx, S
~ 4 bilinearform b <« (v,q) — [,divv(x)qg(x)dx, —
— 4 andrhs. linearforms / = w— [f(x) -w(x)dx,andg=0.
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d
72521 /grad v; -grad w;dx = /Q Dv:Dwdx, v,we (H&(Q)) , (12.2.2.37)
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. [ BB 2 >0 sup'b(v 7) >Bllalo Vi€ Q (LBB2)
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Theorem 12.2.2.38. Existence of stable velocity potentials

IC=C(Q) >0: Vge L}(Q): ve (H(Q)": q=divv A @NIEGI=CIFIES)-

i | Jo divw(x) g(x) d?fl o divv(@)(x) g(x) dx| _ [ 4*(x

sup >
—WE(H&(Q))J ||w“H1(Q) ”V(q)”Hl C"q”LZ(Q)

E”q”LZ(Q)

Theorem 12.2.2.40. Existence and uniqueness of weak solutions of Stokes problem

The linear variational saddle point problem (12.2.2.19) (“Stokes problem”) has a unique solution
(v,p) € H)(div0,Q) x L2(Q), which satisfies

3C=C(Q) >0: vl () + IIPllz) < Cllfll2(q) - (12.2.2.41)
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